Machine Learning HW1
COVID-19 Cases Prediction
一、任务
随机数种子定义,放入gpu
Given survey results in the past 5 days in a specifific state in U.S., then predict the percentage of new tested positive cases in the 5th day.
数据
结果
全过strong baselin,public score与bossline差0.01

二、基础代码
随机数种子定义,放入gpu
def same_seed(seed):
'''Fixes random number generator seeds for reproducibility.'''
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
数据集切割
def train_valid_split(data_set, valid_ratio, seed):
'''Split provided training data into training set and validation set'''
valid_set_size = int(valid_ratio * len(data_set))
train_set_size = len(data_set) - valid_set_size
train_set, valid_set = random_split(data_set, [train_set_size, valid_set_size],
generator=torch.Generator().manual_seed(seed))
return np.array(train_set), np.array(valid_set)
预测函数
def predict(test_loader, model, device):
model.eval() # Set your model to evaluation mode.
preds = []
for x in tqdm(test_loader):
x = x.to(device)
with torch.no_grad():
pred = model(x)
preds.append(pred.detach().cpu())
preds = torch.cat(preds, dim=0).numpy()
return preds
数据格式定义
class COVID19Dataset(Dataset):
'''
x: Features.
y: Targets, if none, do prediction.
'''
def __init__(self, x, y=None):
if y is None:
self.y = y
else:
self.y = torch.FloatTensor(y)
self.x = torch.FloatTensor(x)
def __getitem__(self, idx):
if self.y is None:
return self.x[idx]
else:
return self.x[idx], self.y[idx]
def __len__(self):
return len(self.x)
模型定义
class My_Model(nn.Module):
def __init__(self, input_dim):
super(My_Model, self).__init__()
# TODO: modify model's structure, be aware of dimensions.
self.layers = nn.Sequential(
nn.Linear(input_dim, 16),
nn.ReLU(),
nn.Linear(16, 8),
nn.ReLU(),
nn.Linear(8, 1)
)
def forward(self, x):
x = self.layers(x)
x = x.squeeze(1) # (B, 1) -> (B)
return x
特征选取
def select_feat(train_data, valid_data, test_data, select_all=True):
'''Selects useful features to perform regression'''
y_train, y_valid = train_data[:, -1], valid_data[:, -1]
raw_x_train, raw_x_valid, raw_x_test = train_data[:, :-1], valid_data[:, :-1], test_data
if select_all:
feat_idx = list(range(raw_x_train.shape[1]))
else:
feat_idx = [0, 1, 2, 3, 4] # TODO: Select suitable feature columns.
return raw_x_train[:, feat_idx], raw_x_valid[:, feat_idx], raw_x_test[:, feat_idx], y_train, y_valid
训练
def trainer(train_loader, valid_loader, model, config, device):
global aa
criterion = nn.MSELoss(reduction='mean') # Define your loss function, do not modify this.
optimizer = torch.optim.SGD(model.parameters(), lr=config['learning_rate'], momentum=0.9)
writer = SummaryWriter() # Writer of tensoboard.
if not os.path.isdir('./models'):
os.mkdir('./models') # Create directory of saving models.
n_epochs, best_loss, step, early_stop_count = config['n_epochs'], math.inf, 0, 0
for epoch in range(n_epochs):
model.train() # Set your model to train mode.
loss_record = []
# tqdm is a package to visualize your training progress.
train_pbar = tqdm(train_loader, position=0, leave=True)
for x, y in train_pbar:
optimizer.zero_grad() # Set gradient to zero.
x, y = x.to(device), y.to(device) # Move your data to device.
pred = model(x)
loss = criterion(pred, y)
loss.backward() # Compute gradient(backpropagation).
optimizer.step() # Update parameters.
step += 1
loss_record.append(loss.detach().item())
# Display current epoch number and loss on tqdm progress bar.
train_pbar.set_description(f'Epoch [{epoch + 1}/{n_epochs}]')
train_pbar.set_postfix({'loss': loss.detach().item()})
mean_train_loss = sum(loss_record) / len(loss_record)
writer.add_scalar('Loss/train', mean_train_loss, step)
model.eval() # Set your model to evaluation mode.
loss_record = []
for x, y in valid_loader:
x, y = x.to(device), y.to(device)
with torch.no_grad():
pred = model(x)
loss = criterion(pred, y)
loss_record.append(loss.item())
mean_valid_loss = sum(loss_record) / len(loss_record)
print(f'Epoch [{epoch + 1}/{n_epochs}]: Train loss: {mean_train_loss:.4f}, Valid loss: {mean_valid_loss:.4f}')
writer.add_scalar('Loss/valid', mean_valid_loss, step)
if mean_valid_loss < best_loss:
best_loss = mean_valid_loss
aa = best_loss
torch.save(model.state_dict(), config['save_path']) # Save your best model
print('Saving model with loss {:.3f}...'.format(best_loss))
early_stop_count = 0
else:
early_stop_count += 1
if early_stop_count >= config['early_stop']:
print('\nModel is not improving, so we halt the training session.')
return
device = 'cuda' if torch.cuda.is_available() else 'cpu'
config = {
'seed': 5201314, # Your seed number, you can pick your lucky number. :)
'select_all': True, # Whether to use all features.
'valid_ratio': 0.2, # validation_size = train_size * valid_ratio
'n_epochs': 3000, # Number of epochs.
'batch_size': 256,
'learning_rate': 1e-5,
'early_stop': 400, # If model has not improved for this many consecutive epochs, stop training.
'save_path': './models/model.ckpt' # Your model will be saved here.
}
"""# Dataloader
Read data from files and set up training, validation, and testing sets. You do not need to modify this part.
"""
# Set seed for reproducibility
same_seed(config['seed'])
train_data, test_data = pd.read_csv('./covid.train.csv').values, pd.read_csv('./covid.test.csv').values
train_data, valid_data = train_valid_split(train_data, config['valid_ratio'], config['seed'])
print(f"""train_data size: {train_data.shape}
valid_data size: {valid_data.shape}
test_data size: {test_data.shape}""")
x_train, x_valid, x_test, y_train, y_valid = select_feat(train_data, valid_data, test_data, config['select_all'])
print(f'number of features: {x_train.shape[1]}')
train_dataset, valid_dataset, test_dataset = COVID19Dataset(x_train, y_train), \
COVID19Dataset(x_valid, y_valid), \
COVID19Dataset(x_test)
train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)
valid_loader = DataLoader(valid_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)
test_loader = DataLoader(test_dataset, batch_size=config['batch_size'], shuffle=False, pin_memory=True)
model = My_Model(input_dim=x_train.shape[1]).to(device) # put your model and data on the same computation device.
trainer(train_loader, valid_loader, model, config, device)
测试保存
def save_pred(preds, file):
''' Save predictions to specified file '''
with open(file, 'w') as fp:
writer = csv.writer(fp)
writer.writerow(['id', 'tested_positive'])
for i, p in enumerate(preds):
writer.writerow([i, p])
model = My_Model(input_dim=x_train.shape[1]).to(device)
model.load_state_dict(torch.load(config['save_path']))
preds = predict(test_loader, model, device)
save_pred(preds, 'pred.csv')
print("Loss is {}".format(aa))
三、改进方法
3.1怎么样知道这个特征是好的,排除掉无用特征
def select_feat(train_data, valid_data, test_data, select_all=True):
'''Selects useful features to perform regression'''
#选择label
y_train, y_valid = train_data[:, -1], valid_data[:, -1]
#获取除最后一列(label)之外的所有行和列。
raw_x_train, raw_x_valid, raw_x_test = train_data[:, :-1], valid_data[:, :-1], test_data
#做选择,shape表示维度的维数,shape[0]为第一维,即行数 shape[1]为第二维,即列数
if select_all:
feat_idx = list(range(raw_x_train.shape[1]))
else:
feat_idx = list(range(1,38))+[38,39,40,41,53,54,55,56,57,69,70,71,72,73,85,86,87,88,89,101,102,103,104,105] # TODO: Select suitable feature columns.
return raw_x_train[:, feat_idx], raw_x_valid[:, feat_idx], raw_x_test[:, feat_idx], y_train, y_valid
# device_name = torch.cuda.get_device_name(0)
3.2神经网络模型设计(加BN层,增加隐藏层)
class My_Model(nn.Module):
def __init__(self, input_dim):
#子类把父类的__init__()放到自己的__init__()当中,这样子类就有了父类的__init__()的那些东西。
super(My_Model, self).__init__()
# TODO: modify model's structure, be aware of dimensions.
#nn.Sequential() 可以允许将整个容器视为单个模块(即相当于把多个模块封装成一个模块)
# forward()方法接收输入之后,nn.Sequential()按照内部模块的顺序自动依次计算并输出结果。
self.layers = nn.Sequential(
# 线性运算wx+b,输入维度转化成16维度
nn.Linear(input_dim, 64),
# nn.BatchNorm1d(64),
nn.LeakyReLU(0.1),
nn.Linear(64, 1),
)
def forward(self, x):
x = self.layers(x)
x = x.squeeze(1) # (B, 1) -> (B) 去掉维数为1的维度
return x
def cal_loss(self, pred, target):
return torch.sqrt(self.criterion(pred, target))
3.3超参数设计(各层神经元的数量、batch_size的取值、参数更新时的学习率、权值衰减系数或学习的epoch)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
config = {
'seed': 5201314, # Your seed number, you can pick your lucky number. :)
'select_all': False, # Whether to use all features.
'valid_ratio': 0.2, # validation_size = train_size * valid_ratio
'n_epochs': 3000, # Number of epochs.
'batch_size': 512,
'learning_rate': 1e-5,
'early_stop': 400, # If model has not improved for this many consecutive epochs, stop training.
'save_path': './models/model.ckpt' # Your model will be saved here.
}
3.4优化器改变
#优化算法SGD,带动量的随机梯度下降Momentum-SGD
optimizer = torch.optim.SGD(model.parameters(), lr=config['learning_rate'], momentum=0.95,weight_decay=0.001)#
四、还可以改进的方向
1.为什么会出现测试集准确率高的问题?
测试集的数据特征比较明显。
2.优化方法待改进
数据预处理,调参方法,训练效果可视化分析
3.训练时间过长
使用服务器
这篇博客详细记录了完成2022年李宏毅机器学习课程作业1的过程,包括数据处理、基础代码实现、模型改进以及可能的优化方向。在基础代码部分,涉及了随机数种子设置、数据集切割、特征选取和模型训练等。在改进方法中,提到了特征选择、神经网络模型优化(如添加BN层)和超参数调整。尽管达到了较强的基线表现,但作者也提出了针对测试集准确率过高、优化方法和训练时间的问题进行进一步研究。
883

被折叠的 条评论
为什么被折叠?



