# 第6章 判别分析
# 线性判别分析函数lda()的用法
lda(formula, data, ...)
# formula为一个形如groups~x1+x2+...的公式框架, data为数据框
# 6.2线性判别分析
d6.1 = read.table("clipboard",header=T); attach(d6.1)
plot(x1,x2); text(x1,x2,G,adj=-0.5,col=2)
library(MASS)
(ld = lda(G~x1+x2))
Z = predict(ld); Z
newG = Z$class; newG
cbind(G,Z$x,newG)
(tab = table(G,newG))
sum(diag(prop.table(tab)))
# 6.3 距离判别法
d6.2 = read.table("clipboard",header=T); attach(d6.2); head(d6.2)
plot(Q,C); text(Q,C,G,adj=-0.8)
plot(Q,P); text(Q,P,G,adj=-0.8)
plot(C,P); text(C,P,G,adj=-0.8)
# 二次判别函数qda()的用法
qda(formula, data, ...)
# formula为一个形如groups~x1+x2+...的公式框架,data为数据框
d6.3 = read.table("clipboard",header=T); a
# 线性判别分析函数lda()的用法
lda(formula, data, ...)
# formula为一个形如groups~x1+x2+...的公式框架, data为数据框
# 6.2线性判别分析
d6.1 = read.table("clipboard",header=T); attach(d6.1)
plot(x1,x2); text(x1,x2,G,adj=-0.5,col=2)
library(MASS)
(ld = lda(G~x1+x2))
Z = predict(ld); Z
newG = Z$class; newG
cbind(G,Z$x,newG)
(tab = table(G,newG))
sum(diag(prop.table(tab)))
# 6.3 距离判别法
d6.2 = read.table("clipboard",header=T); attach(d6.2); head(d6.2)
plot(Q,C); text(Q,C,G,adj=-0.8)
plot(Q,P); text(Q,P,G,adj=-0.8)
plot(C,P); text(C,P,G,adj=-0.8)
# 二次判别函数qda()的用法
qda(formula, data, ...)
# formula为一个形如groups~x1+x2+...的公式框架,data为数据框
d6.3 = read.table("clipboard",header=T); a