利用Pentagonal Numbers(五边形数定理)计算整数拆分
you should know:
1)分割函数P(n),简单地说就是n的无序拆分数
2)生成函数
相关资料
see http://blog.youkuaiyun.com/acdreamers/article/details/12259815
also http://pages.uoregon.edu/koch/PentagonalNumbers.pdf
//===================//
如果不想知道原理,可以这样理解,五边形数定理给出了通过P(n)前面某些项(不大于n)的和差来求P(n)的方法。
广义五边形数的通项公式
(−1)kk(3k+−1)/2
,k从1开始
-1, -2, 5, 7, -12….
两个负号,两个正号交替出现
P(13) 就可以表示为 P(13 - 12), P(13 - 7), P(13 - 5), P(13 - 2), P(13 - 1)的和差
P(13) = P(1) - P(5) - P(7) + P(11) + P(12)
发现了吗,加上还是减去P(n-k)和k在数列中的符号是相反的
因为计算第n项,要用到所有比n小的5边形数,大概有 n−−√ 个所以时间复杂度是 O(nsqrt(n))
例题 51nod 1259
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.util.StringTokenizer;
import java.math.*;
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
try {
inputStream = new FileInputStream(new File("in.txt"));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Solver sol = new Solver();
sol.solve(in, out);
out.close();
}
}
// Pentagonal number theorem
// see http://blog.youkuaiyun.com/acdreamers/article/details/12259815
// also http://pages.uoregon.edu/koch/PentagonalNumbers.pdf
class Solver {
final static int Mod = (int)(1e9 + 7);
final static int Maxn = 50000;
static int tab[] = new int [400+5]; // tab of pentagonal number
static int p[] = new int [Maxn+5]; // tab of P(k)
public void solve(InputReader in, PrintWriter out) {
// init tab
int tot = 1;
for (int i=1;tot <= 400;++i) {
tab[tot ++] = i * (3*i-1) / 2;
tab[tot ++] = i * (3*i+1) / 2;
}
p[0] = 1; p[1] = 1;
int n = in.nextInt();
for (int i=2;i<=n;++i) {
int ans = 0;
for (int j=1;tab[j] <= i;++j) {
if ( ((j+1) >> 1 & 1) > 0)
ans = ans + p[i - tab[j]];
else
ans = ans - p[i - tab[j]];
if (ans < 0) ans += Mod;
else if (ans >= Mod) ans -= Mod;
}
p[i] = ans;
}
out.println(p[n]);
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public boolean hasNext() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
String line = reader.readLine();
if (line == null) return false;
tokenizer = new StringTokenizer(line);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return true;
}
public int nextInt() {
return Integer.parseInt(next());
}
}