矩阵快速幂 poj 3734

本文介绍了一个有趣的数学问题——熊猫希望对一排方块进行涂色,要求红色和绿色方块的数量均为偶数,求解在颜色限制条件下不同的涂色方案数量。文章通过递推公式和矩阵快速幂的方法解决了这一问题,并提供了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Blocks
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 6461 Accepted: 3111

Description

Panda has received an assignment of painting a line of blocks. Since Panda is such an intelligent boy, he starts to think of a math problem of painting. Suppose there are N blocks in a line and each block can be paint red, blue, green or yellow. For some myterious reasons, Panda want both the number of red blocks and green blocks to be even numbers. Under such conditions, Panda wants to know the number of different ways to paint these blocks.

Input

The first line of the input contains an integer T(1≤T≤100), the number of test cases. Each of the next T lines contains an integer N(1≤N≤10^9) indicating the number of blocks.

Output

For each test cases, output the number of ways to paint the blocks in a single line. Since the answer may be quite large, you have to module it by 10007.

Sample Input

2
1
2

Sample Output

2
6

Source

我们可以从左边开始染色,设染到第i个方块为止,红绿都是偶数的方案数为ai,红绿恰有一个是偶数的方案数是bi,红绿都是奇数的方案数是ci。这样染到第i+1为止,可以有如下的递推式:

a(i+1)=2*ai+bi;

b(i+1)=2*ai+2*bi+2*ci;

c(i+1)=bi+2*ci;

这样我们可以建立一个矩阵

a(i+1)     |2   1   0|  ai

b(i+1)  = |2   2   2|  bi

c(i+1)     |0   1   2|  ci

这样就和斐波那契数列一样了

代码如下:

#include<stdio.h>
#define M 10007
struct node
{
     int c[3][3];
}FAB;
struct node mul(struct node *a,struct node *b)
{
     struct node t;
     int i,j,k;
     for(i=0;i<3;i++)
          for(j=0;j<3;j++)
               t.c[i][j]=0;
     for(i=0;i<3;i++)
         for(j=0;j<3;j++)
             for(k=0;k<3;k++)
             {
                  t.c[i][j]=(t.c[i][j]+a->c[i][k]*b->c[k][j])%M;
             }
    
      return t;
}
struct node power(struct node *a,int n)
{
        struct node temp;
        temp.c[0][0]=1;temp.c[0][1]=0;temp.c[0][2]=0;
        temp.c[1][0]=0;temp.c[1][1]=1;temp.c[1][2]=0;
        temp.c[2][0]=0;temp.c[2][1]=0;temp.c[2][2]=1;
        while(n>0)
        {
              if(n&1)
              temp=mul(&temp,a);
              *a=mul(a,a);
               n>>=1;
        }
        return temp;
}
int main(void)
{
 
     int n,t;
     scanf("%d",&t);
     while(t--)
     {
        scanf("%d",&n);
        FAB.c[0][0]=2;FAB.c[0][1]=1;FAB.c[0][2]=0;
        FAB.c[1][0]=2;FAB.c[1][1]=2;FAB.c[1][2]=2;
        FAB.c[2][0]=0;FAB.c[2][1]=1;FAB.c[2][2]=2;
        FAB=power(&FAB,n);
        printf("%d\n",FAB.c[0][0]);
     }
 
   
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值