Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
分析
又是最大字段和的问题。之前做过浙大PTA有个类似的(1007)。不过杭电这个对时间要求好像更高,同样的算法在杭电这个问题就会 超时。
第一版(超时)
#include <iostream>
using namespace std;
int main(){
int num;
cin>>num;
int c = num;
while(num--){
int n;
cin>>n;
int a[100001];
int i,j;
for(i = 0;i<n;i++){
cin>>a[i];
}
int s = a[0],m;
int p = 0,q = 0;
for(i = 0;i<n;i++){
m = a[i];
for(j = i+1;j<n;j++){
m += a[j];
if(m>s&&a[j]!=0) {s = m;p = i;q = j;}
}
}
cout<<"Case "<<c-num<<":"<<endl;
cout<<s<<" "<<p+1<<" "<<q+1;
if(num != 0) cout<<endl;
}
return 0;
}
第二版(通过)
双重循环改为单层。
#include <iostream>
using namespace std;
int main(){
int num;
cin>>num;
int c = num;
while(num--){
int n;
cin>>n;
int a[100001];
int i,j;
for(i = 0;i<n;i++){
cin>>a[i];
}
int s = a[0],m = 0;
int p = 0,q = 0,t = 0;
for(i = 0;i<n;i++){
m += a[i];
if(m > s) {
s = m;
p = t;
q = i;
}
if(m < 0){
m = 0;
t = i+1;
}
}
cout<<"Case "<<c-num<<":"<<endl;
cout<<s<<" "<<p+1<<" "<<q+1<<endl;
if(num != 0) cout<<endl;
}
return 0;
}