Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 331336 Accepted Submission(s): 78887
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
#include<stdio.h>
#define maxn 100000
/*
暴力穷举 (时间复杂度n的3次方)
效率低下,运行超时
*/
int main(){
int n,num,i,j,k,count=1;
int a[maxn];
scanf("%d",&n);
while(n--){
scanf("%d",&num);
for(i=0;i<num;i++)
scanf("%d",&a[i]);
int maxsum = -9999999;
int start = 0, end = 0;
for(i=0;i<num;i++) //Time complexity: O(n^3)
{
for(j=i;j<num;j++) // pay attention this: j starts from i not i+1
{
int sum = 0;
for(k=i;k<=j;k++)
{
sum += a[k];
}
if(sum>maxsum)
{
maxsum = sum;
start = i;
end = j;
}
}
}
printf("Case %d:\n",count++);
printf("%d %d %d\n",maxsum,start+1,end+1);
}
}
#include<stdio.h>
/*
动态规划
*/
int main(){
int n,num,i,j,k,count=1;
int a;
scanf("%d",&n);
while(n--){
scanf("%d", &num);
int maxsum = -99999,start = 0,end = 0,sum=0,temp=0;
for(i = 0;i < num; i++)
{
scanf("%d", &a);
sum += a;
if(sum > maxsum){
maxsum = sum;
start = temp;
end = i;
}
if(sum<0){ //小于零时特殊处理
sum = 0;
temp = i+1;
}
}
printf("Case %d:\n",count++);
printf("%d %d %d\n",maxsum,start+1,end+1);
if(n){
printf("\n");
}
}
}