P1927 防护伞

文章讲述了地球防卫小队如何在2012年太阳黑子爆发期间,通过计算黑子间的最大距离来确定最小防护伞面积,使用勾股定理和双精度数值处理确保精度。

题目描述

据说 20122012 的灾难和太阳黑子的爆发有关。于是地球防卫小队决定制造一个特殊防护伞,挡住太阳黑子爆发的区域,减少其对地球的影响。由于太阳相对于地球来说实在是太大了,我们可以把太阳表面看作一个平面,中心定为(0,0)。根据情报,在2012 年时,太阳表面上会产生 N 个黑子区域,每个黑子视为一个点。特殊防护伞可以看作一个巨大的圆面,现在地球防卫小队决定将它的中心定位于某个黑子,然后用伞面挡住其他黑子。因为制造防护伞的材料成本特别高,所以我们希望伞面尽可能的小。

输入格式

第一行:一个整数 N,表示黑子个数。

第 22 到 N−1 行:每行两个整数,表示黑子的坐标(x,y)。

输出格式

第一行:一个实数,表示伞的面积。

输入输出样例

输入 #1

3
0  1 
-8  -4 
-1  4 

输出 #1

279.6017

说明/提示

数据范围及约定
  • 对于 50%50% 的数据:2≤N≤100。
  • 对于 100%100% 的数据:2≤N≤1000,−10000≤x,y≤10000。
注意
  • 精确到小数点后 4位。
  • π 取 3.1415926535。

思路

这道题首先要会求黑子之间的距离,而距离正好用勾股定理\sqrt{(x1-x2)^{2}+(y1-y2)^{2}}

可求。

注意事项!!!

设置的变量都要是double类型,否则答案是错的

之前提交(样例过了)就全WA了,还调了好久。

 AC代码

#include <bits/stdc++.h>
using namespace std;
#define PI 3.1415926535
double r = 100000,rp,xy[1010][2];
int main()
{
    int n;
    cin>>n;
    for (int i=0;i<n;i++)
    {
        for(int j=0;j<2;j++)
            cin>>xy[i][j];
    }
    for (int i=0;i<n;i++)
    {
        rp=0;
        for (int j=0;j<n;j++)
        {
            if (i != j)
            {
                double k=sqrt((xy[i][0] - xy[j][0]) * (xy[i][0] - xy[j][0]) + (xy[i][1] - xy[j][1]) * (xy[i][1] -xy[j][1]));
                rp = max(rp,k);
            }
        }
        if (rp < r)
            r = rp;
    }
        printf("%.4lf",r*r*PI);
        return 0;
}

END

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值