703. Kth Largest Element in a Stream

本文介绍了一种使用最小堆实现的数据结构——KthLargest类,用于高效找到数据流中的第K大元素。该类可在数据流增长时动态维护前K大元素,并快速返回第K大值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Design a class to find the kth largest element in a stream. Note that it is the kth largest element in the sorted order, not the kth distinct element.

Your KthLargest class will have a constructor which accepts an integer k and an integer array nums, which contains initial elements from the stream. For each call to the method KthLargest.add, return the element representing the kth largest element in the stream.

Example:

int k = 3;
int[] arr = [4,5,8,2];
KthLargest kthLargest = new KthLargest(3, arr);
kthLargest.add(3); // returns 4
kthLargest.add(5); // returns 5
kthLargest.add(10); // returns 5
kthLargest.add(9); // returns 8
kthLargest.add(4); // returns 8
Note:
You may assume that nums’ length ≥ k-1 and k ≥ 1.
该题目要求数据流中的最k大的值,数据流说明了数据是动态增长的。这种问题看到了就想到用堆来存k大的数,这儿我们就要用最小堆。

class KthLargest {
private:
	vector<int> c;
    int K=0;
public:
	KthLargest(int k, vector<int>& nums) {
        K=k;
		make_heap(c.begin(), c.end(), greater<int>());
		for (int i = 0; i < nums.size(); i++)
		{
			if (i < k)
			{
				c.push_back(nums[i]);
				push_heap(c.begin(), c.end(), greater<int>());
                
			}
			else
			{
				int tmp = c.front();
				if (tmp < nums[i])
				{
					c.push_back(nums[i]);
					push_heap(c.begin(), c.end(), greater<int>());
					pop_heap(c.begin(), c.end(), greater<int>());
					c.pop_back();
				}
			}
		}

	}

	int add(int val) {
        if (c.size()<K)
        {
            c.push_back(val);
            push_heap(c.begin(),c.end(),greater<int>());
            return c.front();
        }
		int tmp = c.front();
		if (tmp < val)
		{
			c.push_back(val);
			push_heap(c.begin(), c.end(), greater<int>());
			pop_heap(c.begin(), c.end(), greater<int>());
			c.pop_back();
		}
		return c.front();
	}

};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值