Reliable Visualization for Deep Speaker Recognition - 语音可解释性

本文探讨了三种视觉化方法(Grad-CAM++,Score-CAM和Layer-CAM)在语音识别中的应用,发现Layer-CAM在区分目标说话者和干扰者方面表现出色,尤其是在多说话者实验中。Layer-CAM生成的S2层地图被认为最具鉴别力,且跨层聚合可以进一步提升性能。

MOTIVATION OF READING: 语音任务可解释性

Link: http://arxiv.org/abs/2204.03852

Code:http://project.cslt.org/


1. Overview

Motivation of the work:

If any of the visualization tools are reliable when applied to speaker recognition, which makes the conclusions obtained from visualization not fully convincing.

Three CAM algorithms will be investigated: Grad-CAM++, Score-CAM and Layer-CAM. The main idea of these algorithms is to generate a saliency map by combining the activation maps (channels) of a convolutional layer.

2. Mehodology

A class activation map (CAM) is a saliency map that shows the important regions used by the CNN to identify a particular class.

2.1 Grad-CAM an

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值