MOTIVATION OF READING: 语音任务可解释性
Link: http://arxiv.org/abs/2204.03852
1. Overview
Motivation of the work:
If any of the visualization tools are reliable when applied to speaker recognition, which makes the conclusions obtained from visualization not fully convincing.
Three CAM algorithms will be investigated: Grad-CAM++, Score-CAM and Layer-CAM. The main idea of these algorithms is to generate a saliency map by combining the activation maps (channels) of a convolutional layer.
2. Mehodology
A class activation map (CAM) is a saliency map that shows the important regions used by the CNN to identify a particular class.

本文探讨了三种视觉化方法(Grad-CAM++,Score-CAM和Layer-CAM)在语音识别中的应用,发现Layer-CAM在区分目标说话者和干扰者方面表现出色,尤其是在多说话者实验中。Layer-CAM生成的S2层地图被认为最具鉴别力,且跨层聚合可以进一步提升性能。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



