spfa最短路 [URAL-1930]

本文介绍了一种解决特定最短路径问题的方法,该问题涉及在一个受到地震影响的世界中找到一条从一个城市到另一个城市的路径,使车辆在上坡和下坡时所需的齿轮变换次数最少。使用邻接表和SPFA算法进行实现。

题目描述:
给一个图,其中包含上坡和下坡,需要变换几次档才能从一点走到另一点。


分析:
这题是个半裸的最短路,之所以说他是半裸,是因为权值不是直接告诉你的。那么就可以开一个数组,存上一次到达这个点是是上坡档还是下坡档。
如果这条路的方向和之前的方向不同,那么权值为1,否则为0.
我是用的spfa+邻接表做的


题目:

The world is in danger! Awful earthquakes are detected all over the world. Houses are destroyed, rivers overflow the banks, it is almost impossible to move from one city to another. Some roads are still useful, but even they became too steep because of soil movements.
Fortunately, engineer Ivan has a car, which can go well uphill and downhill. But there are different gear-modes for movement up and down, so during the driving you have to change gear-modes all the time. Also engineer Ivan has a good friend –– geologist Orlov. Together they are able to invent a plan for world saving. But, unfortunately, geologist Orlov lives in another town.
Ivan wants to save the world, but gear-box in his car started to wear out, so he doesn’t know, how long he will be able to use it. Please help Ivan to save the world. Find a route to the Orlov's town, such that Ivan will have to change gear-modes as few times as possible. In the beginning of the way Ivan can turn on any of gear-modes and you don't have to count this action as a changing of gear-mode.

Input
There are two positive integer numbers n and m in the first line, the number of towns and roads between them respectively (2 ≤ n ≤ 10 000; 1 ≤ m ≤ 100 000). Next m lines contain two numbers each — numbers of towns, which are connected by road. Moreover, the first is the town, which is situated below, from which you should go uphill by this road. Every road can be used for traveling in any of two directions. There is at most one road between any two cities. In the last line there are numbers of two cities, in which Ivan and geologist Orlov live, respectively. Although the majority of roads were destroyed, Ivan knows exactly, that the way to geologist Orlov’s city exists.
Output
Output the smallest number of gear-modes changes on the way to Orlov’s city.
Example
input output

3 2
1 2
3 2
1 3

1

3 3
1 2
2 3
3 1
1 3

0

代码:

#include <bits/stdc++.h>

using namespace std;

struct edgenode
{
    int pos;
    int dir;
    int next;
}eg[200000];

int dis[10010];
bool vst[10010];
int st, ed, vertex, edge, w, cnt;
int head[10010];
bool nowdir[10010];

int spfa()
{
    queue <int> que;
    int tp;
    dis[st] = 0;
    for(int i=head[st]; i!=-1; i=eg[i].next)
    {
        int pos = eg[i].pos;
        int dir = eg[i].dir;
        nowdir[pos] = dir;
        dis[pos] = 0;
        vst[pos] = true;
        que.push(pos);
    }
    while(! que.empty())
    {
        tp = que.front();
        que.pop();
        vst[tp] = false;
        for(int p=head[tp]; p!=-1; p=eg[p].next)
        {
            int pos = eg[p].pos;
            int weight = eg[p].dir ^ nowdir[tp];
            if(dis[pos] > dis[tp] + weight)
            {
                dis[pos] = dis[tp] + weight;
                nowdir[pos] = eg[p].dir;//改变距离以后 nowdir为tp到当前点的dir
                if(! vst[pos])
                {
                    vst[pos] = true;
                    que.push(pos);
                }
            }
        }
    }
    return dis[ed];
}

void Init()
{
    cnt = 0;
    memset(vst, false, sizeof(vst));
    memset(head, -1, sizeof(head));
    memset(dis, 63, sizeof(dis));
}

int main()
{
    scanf("%d %d", &vertex, &edge);
    Init();
    for(int i=0; i<=edge-1; i++)
    {
        scanf("%d %d", &st, &ed);
        eg[cnt].pos = ed;
        eg[cnt].dir = 1;
        eg[cnt].next = head[st];
        head[st] = cnt ++;
        eg[cnt].pos = st;
        eg[cnt].dir = 0;
        eg[cnt].next = head[ed];
        head[ed] = cnt ++;
    }
    scanf("%d %d", &st, &ed);
    cout << spfa() << endl;
    return 0;
}
一、数据采集层:多源人脸数据获取 该层负责从不同设备 / 渠道采集人脸原始数据,为后续模型训练与识别提供基础样本,核心功能包括: 1. 多设备适配采集 实时摄像头采集: 调用计算机内置摄像头(或外接 USB 摄像头),通过OpenCV的VideoCapture接口实时捕获视频流,支持手动触发 “拍照”(按指定快捷键如Space)或自动定时采集(如每 2 秒采集 1 张),采集时自动框选人脸区域(通过Haar级联分类器初步定位),确保样本聚焦人脸。 支持采集参数配置:可设置采集分辨率(如 640×480、1280×720)、图像格式(JPG/PNG)、单用户采集数量(如默认采集 20 张,确保样本多样性),采集过程中实时显示 “已采集数量 / 目标数量”,避免样本不足。 本地图像 / 视频导入: 支持批量导入本地人脸图像文件(支持 JPG、PNG、BMP 格式),自动过滤非图像文件;导入视频文件(MP4、AVI 格式)时,可按 “固定帧间隔”(如每 10 帧提取 1 张图像)或 “手动选择帧” 提取人脸样本,适用于无实时摄像头场景。 数据集对接: 支持接入公开人脸数据集(如 LFW、ORL),通过预设脚本自动读取数据集目录结构(按 “用户 ID - 样本图像” 分类),快速构建训练样本库,无需手动采集,降低系统开发与测试成本。 2. 采集过程辅助功能 人脸有效性校验:采集时通过OpenCV的Haar级联分类器(或MTCNN轻量级模型)实时检测图像中是否包含人脸,若未检测到人脸(如遮挡、侧脸角度过大),则弹窗提示 “未识别到人脸,请调整姿态”,避免无效样本存入。 样本标签管理:采集时需为每个样本绑定 “用户标签”(如姓名、ID 号),支持手动输入标签或从 Excel 名单批量导入标签(按 “标签 - 采集数量” 对应),采集完成后自动按 “标签 - 序号” 命名文件(如 “张三
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值