题目描述:给你关于一个八数码的描述,以一维形式表示出来,求解出一串可行的操作来。
分析:
首先这道题是一个special judge.
这道题卡的我出翔了…总的来说,主要部分有:是否可解的判断 、怎样搜索、怎样表示八数码的一种状态。
一、 是否可解
首先把x当做零
上网查阅后知道,以除零以外组成的一位数组的逆序对数的奇偶为标准,可以划分成两个等价类,向左或向右移动不改变逆序对数,向上或向下增加或减少两个逆序对数,所以同一等价类可以相互转换,是否可解在一开始就能判断出来,逆序对数为偶则为可解,否则不可解。
二、 搜索方法
这题好像暴力BFS能勉强过?反正我是直接上网上学的A*搜索..每种状况都有一个F值,F值越小,离答案越近。
一个情况的F值有两部分组成,G和H:
1. G:已经走过的路径长度,在八数码问题中就是从初始状态到此状态移动的步数
2. H:距目标的预算长度,在八数码问题中就是九个数离各自应该在位置的距离和。
比如:
1 2 3
4 5 6
7 8 0
这个情况的H值为0,因为每个数字都在它们自己应该在的位置上。
1 2 3
4 5 6
8 7 0
这个情况H=2,1-6全都在对应的位置上,对H的贡献为0。7应该在它左边的那个位置,距那个位置距离为1;8应该在它右面的位置上,距离为1,所以这个情况的H=2。
1 2 3
4 7 6
8 5 0
1-3、4、6都在对应的位置上,7贡献为2,5贡献为1,8贡献为1,所以H=2+1+1=4.
这样就按照每种情况放进优先队列中,按F从小到大排序。
三、表示
四个字:康拓展开。
具体是什么百度就能看懂,蛮简单的。
题目:
The 15-puzzle has been around for over 100 years; even if you don’t know it by that name, you’ve seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let’s call the missing tile ‘x’; the object of the puzzle is to arrange the tiles so that they are ordered as:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 x
where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
r-> d-> r->
The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.
Input
You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus ‘x’. For example, this puzzle
1 2 3
x 4 6
7 5 8
is described by this list:
1 2 3 x 4 6 7 5 8
Output
You will print to standard output either the word “unsolvable”, if the puzzle has no solution, or a string consisting entirely of the letters ‘r’, ‘l’, ‘u’ and ‘d’ that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.
Sample Input
2 3 4 1 5 x 7 6 8
Sample Output
ullddrurdllurdruldr
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <sstream>
#include <vector>
#include <queue>
#include <cmath>
using namespace std;
bool vst[1000000];
int fac[9];
int factor(int n)
{
int ans = 1;
for(int i=1; i<=n; i++)
ans *= i;
return ans;
}
void make_factor(int fac[9])
{
for(int i=0; i<=8; i++)
fac[i] = factor(i);
}
class node
{
public:
int code;
int data[3][3];
int x, y;
int g, h;
string op;
void geth()
{
int ans = 0;
for(int i=0; i<=2; i++)
{
for(int j=0; j<=2; j++)
{
ans += abs(i - (data[i][j] - 1) / 3) + abs(j - (data[i][j] - 1) % 3);
}
}
h = ans;
}
void encode()
{
int ans = 0, cnt = 0;
for(int i=0; i<=8; i++)
{
cnt = 0;
for(int j=i+1; j<=8; j++)
if(data[j/3][j%3] < data[i/3][i%3])
cnt ++;
ans += cnt * fac[8 - i];
}
code = ans;
}
bool operator < (const node a)const//q1:关于优先队列的排序
{
return h != a.h ? h > a.h : g < a.g;
}
}tp, tmp;
bool judge()
{
int cnt = 0;
for(int i=0; i<=8; i++)
{
if(tmp.data[i/3][i%3] == 0)
continue;
for(int j=i+1; j<=8; j++)
{
if(tmp.data[j/3][j%3] == 0)
continue;
if(tmp.data[i/3][i%3] > tmp.data[j/3][j%3])
cnt ++;
}
}
return ! (cnt & 1);
}
void BFS()
{
int dx[4] = {0, 0, 1, -1};
int dy[4] = {-1, 1, 0, 0};
char oprt[4] = {'l', 'r', 'd', 'u'};
priority_queue <node> que;
que.push(tmp);
vst[tmp.code] = true;
while(! que.empty())
{
tp = que.top();
que.pop();
if(tp.code == 46233)
{
cout << tp.op << endl;
return ;
}
for(int i=0; i<=3; i++)
{
int x = tp.x + dx[i];
int y = tp.y + dy[i];
if(x >= 0 && x <= 2 && y >= 0 && y <= 2)
{
tmp = tp;
swap(tmp.data[tmp.x][tmp.y], tmp.data[x][y]);
tmp.encode();
if(! vst[tmp.code])
{
tmp.x = x;
tmp.y = y;
tmp.g ++;
tmp.geth();
tmp.op += oprt[i];
vst[tmp.code] = true;
que.push(tmp);
}
}
}
}
}
int main()
{
char ch;
string s;
make_factor(fac);
while(getline(cin, s))
{
memset(vst, false, sizeof(vst));
stringstream ss(s);
for(int i=0; i<=2; i++)
{
for(int j=0; j<=2; j++)
{
ss >> ch;
if(ch == 'x')
{
tmp.data[i][j] = 0;
tmp.x = i;
tmp.y = j;
}
else
tmp.data[i][j] = ch - 48;
}
}
if(! judge())
{
cout << "unsolvable" << endl;
continue;
}
tmp.encode();
tmp.g = 0;
tmp.geth();
tmp.op.clear();
BFS();
}
return 0;
}
本文介绍了一个经典的八数码问题解决方案,采用A*搜索算法,并详细解释了如何判断问题是否可解、如何表示状态及如何进行搜索的过程。
527

被折叠的 条评论
为什么被折叠?



