《暑假每日一题》Week 1: 6.20 - 6.26

这篇博客记录了作者在暑假期间通过动态规划解决不同类型的背包问题,包括01背包、完全背包、多重背包以及混合背包问题。作者分享了每种问题的解题思路和AC代码,从朴素实现到优化的空间复杂度,展示了如何将复杂问题转化为01背包问题来提高效率。


《暑假每日一题》Week 1: 6.20 - 6.26


前言

  • 环境:VS 2019
  • 大一,水平不高,单纯记录暑假生活。
  • AcWing题库

Day 1 :01背包问题

关键词

  1. 每件物品只能使用一次
  2. 总体积不超过背包容量(不是正好相等哦~)
  3. 求的是总价值最大(不是最多能放多少个东西)
  4. 放进一个物品是能获得价值,不是白嫖

解题思路

  • 算法:(二维动态规划) O(n^2)

在这里插入图片描述

AC代码

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int v[N]; //每个物品的体积
int w[N]; //每个物品的价值
int f[N][N]; //状态转移方程,上面有详细解释
int main(){
    int n, m;
    cin >> n >> m; //输入物品数量和背包容量
    for(int i = 1;i <= n;i ++) scanf("%d%d",&v[i],&w[i]); //输入每个物体的体积和价值
    for(int i = 1;i <= n;i ++){
        for(int j = 0; j <= m; j ++){
            if(j < v[i]) f[i][j] = f[i - 1][j]; //不合法,不包括i
            else f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]); //包括i
        }
    }
    cout << f[n][m] << endl; //输出答案
    return 0;
}

Day 2 : 完全背包问题

关键词

  1. 集合 : 用前i个物品 ,装进体积为j 的所有方案的集合 f[i][j]
  2. 属性 : 所选方案中物品价值的最大值
  3. 计算 | 集合的划分 : 第i个物品选择次数来划分
  4. 完全 : 每个物品可以选择无数次,但是不能超过背包的体积

解题思路

在这里插入图片描述

AC代码

朴素写法1

#include <iostream>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N][N];
int main(){
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
    for (int i = 1; i <= n; i ++ )
    for (int j = 1; j <= m; j ++ ){
         f[i][j] = f[i - 1][j];  // 第i个物品选0次
         for(int k = 1; k <= j / v[i]; k ++){ 
              f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]); // 选k次
         } 
      }
    cout << f[n][m] << endl;
    return 0;
    }

上面是刚开始采用了朴素写法 果然TLE了,于是下面进行了代码优化。

朴素写法2

#include <iostream>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N][N];
int main(){
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
    for (int i = 1; i <= n; i ++ )
    for (int j = 1; j <= m; j ++ ){
         f[i][j] = f[i - 1][j];             // 第i个物品选0次
         if (j >= v[i]) 
         f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]); //  第i个物品选其他次
         //针对朴素写法1 的f[i][j] 的等价变换 f[i][j-v]推导得出
      }
      cout << f[n][m] << endl;
      return 0;
}
          

空间优化(最终代码)

#include <iostream>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N];
int main(){
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
    for (int i = 1; i <= n; i ++ )
    for (int j = v[i]; j <= m; j ++ )  // 注意j的初值
         f[j] = max(f[j], f[j - v[i]] + w[i]);
         // 内循环递增  
         // 恒等式 f[j] = f[j]省略没写 ; if(j >= V[i])的条件判断 直接写到for里面 
         cout << f[m] << endl;
         return 0;
}

Day 3 :多重背包问题1

解题思路

闫氏DP分析法

一、状态表示:f[i][j]

  1. 集合:从前i个物品中选,且总体积不超过j的所有方案的集合.
  2. 属性:最大值

二、状态计算:

  1. 思想-----集合的划分
  2. 集合划分依据:根据第i个物品有多少个来划分.含0个、含1个···含k个.
    状态表示与完全背包朴素代码一样均为:
    f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
    在这里插入图片描述

AC代码

也没有想太多 暴力就完事了(嗯~暴力) 本题目n = 100, n3=1e6n3=1e6 没超时

#include <iostream>
using namespace std;
const int N = 110;
int v[N],w[N],s[N];
int n,m;
int f[N][N];
int main(){
    ios::sync_with_stdio(false); cin.tie(0);
    cin >> n >> m;
    for(int i = 1; i <= n; i++) cin >> v[i] >> w[i] >> s[i];
    for(int i = 1; i <= n; i++){
        for(int j = 0; j <= m; j++){
            for(int k = 0; k <= s[i] && k*v[i] <= j; k++){ // k = 0包含了 f[i-1][j]的情况
                 f[i][j] = max(f[i][j],f[i-1][j-k*v[i]] + w[i]*k);
            }
        }
    }
    cout << f[n][m] << endl;
    return 0;
}

Day 4 : 数组中数值和下标相等的元素

(摆烂的Day4)

解题思路

单调性 二分
mid左边的数会小于mid,mid右边的数会大于mid,符合单调性

AC代码

(该题选自LeetCode,所以代码提交格式不太一样)

class Solution {
public:
    int getNumberSameAsIndex(vector<int>& nums) {
        int l = 0,r = nums.size() - 1;
        while (l < r){
            int mid = l + r >> 1;
            if (mid <= nums[mid])r = mid;
            else l = mid + 1;
        }
        if (l == nums[l])
        return l;
        else 
        return -1;
    }
};

Day 5:多重背包问题ll

解题思路

因为数据加大,三重循环会超时,这时候需要用到二进制优化转为01背包

设某件物品ii 的sisi = 7 , 二进制为111111 , 20=1,21=2,22=420=1,21=2,22=4
此时我们将该物品拆分,

k = 1即当成1件物品(wi∗1,vi∗1wi∗1,vi∗1),

k = 2当成一件物品(wi∗2,vi∗2wi∗2,vi∗2),

k = 4当成一件物品(wi∗4,vi∗4wi∗4,vi∗4)

我们就可以 任意选 这被拆分得到的三件物品 凑成所有的情况,即选该物品i被选任意一个数量的情况

注意:

这些被拆分的物品,已经是像01背包一样,互不干涉的,并且只能选一次

例如:

0=0,1=1,2=2,3=1+2,4=4,5=1+4,6=2+4,7=1+2+30=0,1=1,2=2,3=1+2,4=4,5=1+4,6=2+4,7=1+2+3
再比如另一个物品i, si=11si=11, 就必须拆成k=1,k=2,k=4,k=4k=1,k=2,k=4,k=4
任意选这些被拆分得到的物品同样可以凑出所有情况, 即 0 ~ 11的所有情况

AC代码

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 12010, M = 2010;
int n, m;
int v[N], w[N];
int f[M];
int main(){
    cin >> n >> m;
    //被拆分的所有物品数量
    int cnt = 0; 
    for(int i = 1; i <= n; i ++){
        int a, b, s;
        cin >> a >> b >> s;
        int k = 1;
        while(k <= s){
            cnt ++;
            //每个被拆掉得成物品的权值
            v[cnt] = a * k;  
            w[cnt] = b * k;
            s -= k;
            k *= 2;
        }
        //11 : 1 2 4 4多出的4
        if(s > 0){
            cnt ++;
            v[cnt] = a * s;
            w[cnt] = b * s;
        }
    }
    n = cnt;
    for(int i = 1; i <= n; i ++)  //01背包
        for(int j = m; j >= v[i]; j--){
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
        cout << f[m] << endl;
        return 0;
}

Day 6 : 混合背包问题

解题思路

完全背包虽然说我们可以选的个数是无穷个,但是因为有体积限制所以我们完全背包实际上也是有限的
因此完全背包可以看作每个物品可以选择的个数为m(总体积)/vi[i]的一个多重背包
然而多重背包可以转换为等价的01背包
所以这题的三个背包都可以转化为01背包
所以整个问题可以转化为为一个01背包问题

AC代码

#include<bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int n, V, w[N], v[N], cnt, dp[N];
int main(){
    cin >> n >> V;
    for (int i = 1; i <= n; i++){
        int a, b, s;
        cin >> a >> b >> s;
        if (s < 0) s = 1;//其实就是s==-1的情况,只能用一次,于是我们把它转化为数量为1的多重背包.
        if (s == 0) s = V / a;//完全背包,可以放的东西总体积不超过V,于是可以转化为数量为V/a(C++中int变量相除向下取整)的多重背包.
        int k = 1;
        while (k <= s){//常规多重背包处理,用二进制优化
            cnt ++;
            v[cnt] = k * a;
            w[cnt] = k * b;
            s -= k;
            k *= 2;
        }
        if (s > 0)
        {
            cnt ++;
            v[cnt] = s * a;
            w[cnt] = s * b;
        }
    }
    for (int i = 1; i <= cnt; i++)//01背包处理
    {
        for (int j = V; j >= v[i]; j--)
        {
            dp[j] = max(dp[j], dp[j - v[i]] + w[i]);
        }
    }
    cout << dp[V] << endl;
    return 0;
}
计算出了一推负数 2108 2024-08-13 20:19:25 2024-08-13 19:37:45 -0.69 2108 2024-08-13 20:19:25 2024-08-13 19:58:23 -0.35 2108 2024-08-13 20:19:25 2024-08-13 20:18:54 -0.01 2108 2024-08-13 20:19:25 2024-09-22 13:41:52 953.37 2108 2024-08-13 20:19:25 2024-09-22 13:41:52 953.37 3309 2024-08-29 17:23:00 2024-08-29 15:57:56 -1.42 3309 2024-08-29 17:23:00 2024-08-29 16:39:06 -0.73 3309 2024-08-29 17:23:00 2024-08-29 17:20:26 -0.04 3309 2024-08-29 17:23:00 2024-09-21 14:28:36 549.09 3309 2024-08-29 17:23:00 2024-09-21 14:28:36 549.09 3519 2024-09-02 14:06:09 2024-09-02 13:13:52 -0.87 3519 2024-09-02 14:06:09 2024-09-02 13:21:32 -0.74 3519 2024-09-02 14:06:09 2024-09-02 14:05:24 -0.01 3519 2024-09-02 14:06:09 2025-10-29 14:27:46 10128.36 6359 2024-10-15 17:29:34 2024-10-14 13:09:06 -28.34 6359 2024-10-15 17:29:34 2024-10-15 09:27:15 -8.04 6359 2024-10-15 17:29:34 2024-10-15 17:28:26 -0.02 7809 2024-11-03 17:06:23 2024-11-03 11:02:32 -6.06 7809 2024-11-03 17:06:23 2024-11-03 11:03:57 -6.04 7809 2024-11-03 17:06:23 2024-11-03 17:05:37 -0.01 8292 2024-11-09 19:16:00 2024-11-08 11:18:50 -31.95 8292 2024-11-09 19:16:00 2024-11-08 11:20:26 -31.93 8292 2024-11-09 19:16:00 2024-11-09 19:15:30 -0.01 8640 2024-11-12 15:23:17 2024-11-12 14:46:17 -0.62 8640 2024-11-12 15:23:17 2024-11-12 14:53:45 -0.49 8640 2024-11-12 15:23:17 2024-11-12 15:22:27 -0.01 8994 2024-11-17 17:22:54 2024-11-17 16:45:23 -0.63 8994 2024-11-17 17:22:54 2024-11-17 16:59:51 -0.38 8994 2024-11-17 17:22:54 2024-11-17 17:20:09 -0.05 8994 2024-11-17 17:22:54 2024-11-17 21:23:02 4.00 8994 2024-11-17 17:22:54 2024-11-17 21:23:02 4.00 9474 2024-11-23 11:35:11 2024-11-23 11:27:52 -0.12 9474 2024-11-23 11:35:11 2024-11-23 11:28:34 -0.11 9474 2024-11-23 11:35:11 2024-11-23 11:34:21 -0.01 9474 2024-11-23 11:35:11 2024-11-23 14:39:42 3.08 9474 2024-11-23 11:35:11 2024-11-23 14:39:42 3.08 9550 2024-11-25 09:28:00 2024-11-25 08:59:51 -0.47 9550 2024-11-25 09:28:00 2024-11-25 09:24:55 -0.05 9550 2024-11-25 09:28:00 2024-11-25 09:27:39 -0.01 9640 2024-11-26 09:36:35 2024-11-26 09:13:07 -0.39 9640 2024-11-26 09:36:35 2024-11-26 09:15:55 -0.34 9640 2024-11-26 09:36:35 2024-11-26 09:35:47 -0.01 9903 2024-11-28 13:36:22 2024-11-28 13:16:43 -0.33 9903 2024-11-28 13:36:22 2024-11-28 13:17:23 -0.32 9903 2024-11-28 13:36:22 2024-11-28 13:35:38 -0.01 10308 2024-12-03 15:44:00 2024-12-03 15:32:13 -0.20 10308 2024-12-03 15:44:00 2024-12-03 15:36:00 -0.13 10308 2024-12-03 15:44:00 2024-12-03 15:43:26 -0.01 10308 2024-12-03 15:44:00 2024-12-30 10:26:46 642.71 10308 2024-12-03 15:44:00 2024-12-30 10:26:46 642.71 10408 2024-12-04 15:13:29 2024-12-04 14:45:56 -0.46 10408 2024-12-04 15:13:29 2024-12-04 14:46:48 -0.44 10408 2024-12-04 15:13:29 2024-12-04 15:12:44 -0.01 10664 2024-12-08 16:52:52 2024-12-08 16:10:40 -0.70 10664 2024-12-08 16:52:52 2024-12-08 16:15:51 -0.62 10664 2024-12-08 16:52:52 2024-12-08 16:52:03 -0.01 10858 2024-12-19 16:00:00 2024-12-10 15:55:47 -216.07 10858 2024-12-19 16:00:00 2024-12-14 09:08:44 -126.85 10858 2024-12-19 16:00:00 2024-12-19 15:44:48 -0.25 10858 2024-12-19 16:00:00 2024-12-19 15:46:42 -0.22 10858 2024-12-19 16:00:00 2025-02-02 14:23:14 1078.39 11399 2024-12-18 14:12:00 2024-12-17 10:10:32 -28.02 11399 2024-12-18 14:12:00 2024-12-18 13:51:39 -0.34 11399 2024-12-18 14:12:00 2024-12-18 13:53:18 -0.31 11399 2024-12-18 14:12:00 2024-12-18 14:08:44 -0.05 11399 2024-12-18 14:12:00 2024-12-18 14:11:58 0.00 11639 2024-12-19 17:38:37 2024-12-19 14:54:14 -2.74 11639 2024-12-19 17:38:37 2024-12-19 15:19:37 -2.32 11639 2024-12-19 17:38:37 2024-12-19 15:21:02 -2.29 11639 2024-12-19 17:38:37 2024-12-19 15:26:48 -2.20 11639 2024-12-19 17:38:37 2024-12-19 17:37:18 -0.02 11890 2024-12-23 14:10:51 2024-12-23 11:01:08 -3.16 11890 2024-12-23 14:10:51 2024-12-23 11:17:57 -2.88 11890 2024-12-23 14:10:51 2024-12-23 11:21:42 -2.82 11890 2024-12-23 14:10:51 2024-12-23 13:00:26 -1.17 11890 2024-12-23 14:10:51 2024-12-23 14:07:15 -0.06 12002 2024-12-24 14:00:00 2024-12-24 09:55:03 -4.08 12002 2024-12-24 14:00:00 2024-12-24 13:02:09 -0.96 12002 2024-12-24 14:00:00 2024-12-24 13:11:13 -0.81 12002 2024-12-24 14:00:00 2024-12-24 13:20:49 -0.65 12002 2024-12-24 14:00:00 2024-12-24 19:14:44 5.25 12144 2024-12-26 10:00:00 2024-12-25 16:44:08 -17.26 12144 2024-12-26 10:00:00 2024-12-25 17:00:56 -16.98 12144 2024-12-26 10:00:00 2024-12-25 17:03:45 -16.94 12144 2024-12-26 10:00:00 2024-12-25 17:10:57 -16.82 12144 2024-12-26 10:00:00 2024-12-25 17:21:22 -16.64 12144 2024-12-26 10:00:00 2024-12-26 10:01:28 0.02 12233 2024-12-26 17:27:22 2024-12-26 16:52:57 -0.57 12233 2024-12-26 17:27:22 2024-12-26 16:59:50 -0.46 12233 2024-12-26 17:27:22 2024-12-26 17:26:33 -0.01 12310 2024-12-30 11:00:00 2024-12-27 13:24:20 -69.59 12310 2024-12-30 11:00:00 2024-12-27 13:29:14 -69.51 12310 2024-12-30 11:00:00 2024-12-30 09:03:44 -1.94 12310 2024-12-30 11:00:00 2024-12-30 10:02:23 -0.96 12310 2024-12-30 11:00:00 2024-12-30 10:15:01 -0.75 12478 2024-12-30 14:00:00 2024-12-30 13:46:52 -0.22 12478 2024-12-30 14:00:00 2024-12-30 13:48:35 -0.19 12478 2024-12-30 14:00:00 2024-12-30 13:50:36 -0.16 12478 2024-12-30 14:00:00 2024-12-30 13:54:12 -0.10 12478 2024-12-30 14:00:00 2024-12-30 16:14:53 2.25 12479 2024-12-30 14:00:00 2024-12-30 13:47:31 -0.21 12479 2024-12-30 14:00:00 2024-12-30 13:48:24 -0.19 12479 2024-12-30 14:00:00 2024-12-30 13:50:30 -0.16 12479 2024-12-30 14:00:00 2024-12-30 13:55:09 -0.08 12479 2024-12-30 14:00:00 2024-12-30 16:15:41 2.26 12546 2024-12-31 16:45:53 2024-12-31 09:21:40 -7.40 12546 2024-12-31 16:45:53 2024-12-31 09:25:17 -7.34 12546 2024-12-31 16:45:53 2024-12-31 10:09:11 -6.61 12546 2024-12-31 16:45:53 2024-12-31 10:29:44 -6.27 12546 2024-12-31 16:45:53 2024-12-31 16:45:03 -0.01 12547 2024-12-31 16:45:21 2024-12-31 09:24:17 -7.35 12547 2024-12-31 16:45:21 2024-12-31 09:25:05 -7.34 12547 2024-12-31 16:45:21 2024-12-31 10:09:18 -6.60 12547 2024-12-31 16:45:21 2024-12-31 10:30:02 -6.26 12547 2024-12-31 16:45:21 2024-12-31 16:44:32 -0.01 12589 2025-01-01 09:00:00 2024-12-31 13:36:06 -19.40 12589 2025-01-01 09:00:00 2024-12-31 13:55:28 -19.08 12589 2025-01-01 09:00:00 2024-12-31 13:55:52 -19.07 12589 2025-01-01 09:00:00 2025-01-01 08:56:59 -0.05 12589 2025-01-01 09:00:00 2025-01-01 14:55:13 5.92 12759 2025-01-03 08:11:00 2025-01-02 16:14:24 -15.94 12759 2025-01-03 08:11:00 2025-01-02 17:40:18 -14.51 12759 2025-01-03 08:11:00 2025-01-02 17:41:33 -14.49 12759 2025-01-03 08:11:00 2025-01-02 17:53:16 -14.30 12759 2025-01-03 08:11:00 2025-01-03 10:31:14 2.34 12760 2025-01-03 13:00:00 2025-01-02 16:16:05 -20.73 12760 2025-01-03 13:00:00 2025-01-02 16:32:50 -20.45 12760 2025-01-03 13:00:00 2025-01-02 16:35:25 -20.41 12760 2025-01-03 13:00:00 2025-01-02 16:38:00 -20.37 12760 2025-01-03 13:00:00 2025-01-04 10:04:03 21.07 12878 2025-01-09 08:00:00 2025-01-03 20:19:47 -131.67 12878 2025-01-09 08:00:00 2025-01-06 14:04:56 -65.92 12878 2025-01-09 08:00:00 2025-01-06 14:14:15 -65.76 12878 2025-01-09 08:00:00 2025-01-06 14:20:32 -65.66 12878 2025-01-09 08:00:00 2025-01-09 13:20:27 5.34 13020 2025-01-06 19:39:00 2025-01-06 13:38:07 -6.01 13020 2025-01-06 19:39:00 2025-01-06 13:48:47 -5.84 13020 2025-01-06 19:39:00 2025-01-06 17:55:22 -1.73 13020 2025-01-06 19:39:00 2025-01-07 09:28:54 13.83 13020 2025-01-06 19:39:00 2025-01-07 15:15:54 19.62 13042 2025-01-07 10:22:00 2025-01-06 17:57:20 -16.41 13042 2025-01-07 10:22:00 2025-01-06 17:59:09 -16.38 13042 2025-01-07 10:22:00 2025-01-06 18:02:22 -16.33 13042 2025-01-07 10:22:00 2025-01-07 09:49:51 -0.54 13042 2025-01-07 10:22:00 2025-01-07 11:23:51 1.03 13224 2025-01-08 15:35:02 2025-01-08 10:20:45 -5.24 13224 2025-01-08 15:35:02 2025-01-08 11:26:21 -4.14 13224 2025-01-08 15:35:02 2025-01-08 13:08:23 -2.44 13224 2025-01-08 15:35:02 2025-01-08 13:10:15 -2.41 13224 2025-01-08 15:35:02 2025-01-08 15:34:14 -0.01 13274 2025-01-09 14:22:52 2025-01-09 08:27:46 -5.92 13274 2025-01-09 14:22:52 2025-01-09 08:34:36 -5.80 13274 2025-01-09 14:22:52 2025-01-09 08:36:21 -5.78 13274 2025-01-09 14:22:52 2025-01-09 09:52:06 -4.51 13274 2025-01-09 14:22:52 2025-01-09 14:23:15 0.01 13295 2025-01-09 10:50:56 2025-01-09 08:57:04 -1.90 13295 2025-01-09 10:50:56 2025-01-09 09:36:29 -1.24 13295 2025-01-09 10:50:56 2025-01-09 09:40:21 -1.18 13295 2025-01-09 10:50:56 2025-01-09 09:52:27 -0.97 13295 2025-01-09 10:50:56 2025-01-09 10:51:05 0.00 13312 2025-01-09 13:18:44 2025-01-09 09:20:44 -3.97 13312 2025-01-09 13:18:44 2025-01-09 09:21:42 -3.95 13312 2025-01-09 13:18:44 2025-01-09 09:23:05 -3.93 13312 2025-01-09 13:18:44 2025-01-09 09:53:56 -3.41 13312 2025-01-09 13:18:44 2025-01-09 13:18:58 0.00 13319 2025-01-09 11:00:00 2025-01-09 09:33:42 -1.44 13319 2025-01-09 11:00:00 2025-01-09 09:36:45 -1.39 13319 2025-01-09 11:00:00 2025-01-09 10:47:27 -0.21 13319 2025-01-09 11:00:00 2025-01-09 19:41:16 8.69 13336 2025-01-11 09:43:37 2025-01-09 10:25:55 -47.30 13336 2025-01-11 09:43:37 2025-01-09 10:29:41 -47.23 13336 2025-01-11 09:43:37 2025-01-09 10:29:50 -47.23 13336 2025-01-11 09:43:37 2025-01-09 15:17:04 -42.44 13336 2025-01-11 09:43:37 2025-01-09 16:50:52 -40.88 13336 2025-01-11 09:43:37 2025-01-11 09:43:55 0.01 13397 2025-01-12 14:00:00 2025-01-10 08:56:04 -53.07 13397 2025-01-12 14:00:00 2025-01-10 10:41:29 -51.31 13397 2025-01-12 14:00:00 2025-01-10 13:06:13 -48.90 13397 2025-01-12 14:00:00 2025-01-10 13:09:09 -48.85 13397 2025-01-12 14:00:00 2025-01-13 15:11:44 25.20 13398 2025-01-10 12:57:49 2025-01-10 08:56:29 -4.02 13398 2025-01-10 12:57:49 2025-01-10 09:32:54 -3.42 13398 2025-01-10 12:57:49 2025-01-10 09:33:26 -3.41 13398 2025-01-10 12:57:49 2025-01-10 10:20:10 -2.63 13398 2025-01-10 12:57:49 2025-01-10 12:58:02 0.00 13416 2025-01-10 13:19:03 2025-01-10 09:38:38 -3.67 13416 2025-01-10 13:19:03 2025-01-10 09:40:17 -3.65 13416 2025-01-10 13:19:03 2025-01-10 09:42:10 -3.61 13416 2025-01-10 13:19:03 2025-01-10 10:19:41 -2.99 13416 2025-01-10 13:19:03 2025-01-10 13:19:31 0.01 13447 2025-01-10 16:42:01 2025-01-10 14:44:40 -1.96 13447 2025-01-10 16:42:01 2025-01-10 14:45:12 -1.95 13447 2025-01-10 16:42:01 2025-01-10 14:49:33 -1.87 13447 2025-01-10 16:42:01 2025-01-10 14:50:39 -1.86 13447 2025-01-10 16:42:01 2025-01-10 16:42:07 0.00 13454 2025-01-11 18:47:00 2025-01-10 16:26:06 -26.35 13454 2025-01-11 18:47:00 2025-01-10 16:57:15 -25.83 13454 2025-01-11 18:47:00 2025-01-10 17:05:28 -25.69 13454 2025-01-11 18:47:00 2025-01-10 17:12:17 -25.58 13454 2025-01-11 18:47:00 2025-01-11 19:09:42 0.38
11-12
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值