奶酪
题目背景:
NOIP2017 D2T1
分析:搜索
代码刚刚下来的时候,测试这道题,我差点还T了······不过事实证明还是没有卡正确复杂度的······比较简单,直接O(n2)判断一下,两个球是否联通,如果联通,则连边,然后在判断和上下底面相切的位置有哪些,将上下底面抽象成两个点,一样连边,然后从下底所代表的点,开始dfs,看是否能够到上底即可。
当时学军数据,最后两个点会爆掉long long,但是最后官方没有,感觉出题人的那个中间·····的确有逻辑漏洞······
Source:
/*
created by scarlyw
*/
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>
#include <cctype>
#include <cmath>
#include <iostream>
#include <queue>
#include <set>
#include <vector>
template<class T>
inline void R(T &x) {
static char c;
static bool iosig;
for (c = getchar(), iosig = false; !isdigit(c); c = getchar()) {
if (c == -1) return ;
if (c == '-') iosig = true;
}
for (x = 0; isdigit(c); c = getchar())
x = ((x << 2) + x << 1) + (c ^ '0');
if (iosig) x = -x;
}
const int MAXN = 1000 + 10;
std::vector<int> edge[MAXN];
int n, h, r, t;
bool vis[MAXN];
struct ball {
int x, y, z;
} b[MAXN];
inline void add_edge(int x, int y) {
edge[x].push_back(y), edge[y].push_back(x);
}
inline bool able(int i, int j) {
long long temp = (long long)(b[i].x - b[j].x) * (b[i].x - b[j].x)
+ (long long)(b[i].y - b[j].y) * (b[i].y - b[j].y)
+ (long long)(b[i].z - b[j].z) * (b[i].z - b[j].z);
if ((long long)r * r * 4LL >= temp) return true;
else return false;
}
inline void dfs(int cur) {
vis[cur] = true;
for (int p = 0; p < edge[cur].size(); ++p) {
int v = edge[cur][p];
if (!vis[v]) dfs(v);
}
}
inline void solve() {
R(n), R(h), R(r);
memset(vis, 0, sizeof(bool) * (n + 5));
for (int i = 0; i <= n + 1; ++i) edge[i].clear();
for (int i = 1; i <= n; ++i) R(b[i].x), R(b[i].y), R(b[i].z);
for (int i = 1; i <= n; ++i) if (b[i].z <= r) add_edge(0, i);
for (int i = 1; i <= n; ++i) if (b[i].z >= h - r) add_edge(i, n + 1);
for (int i = 1; i <= n; ++i)
for (int j = i + 1; j <= n; ++j)
if (able(i, j)) add_edge(i, j);
dfs(0);
vis[n + 1] ? (std::cout << "Yes\n") : (std::cout << "No\n");
}
int main() {
freopen("cheese.in", "r", stdin);
freopen("cheese.out", "w", stdout);
R(t);
while (t--) solve();
return 0;
}