LG P4119 [Ynoi2018] 未来日记 Solution

Description

给定序列 a = ( a 1 , a 2 , ⋯   , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,,an),有 m m m 个操作分两种:

  • replace ⁡ ( l , r , x , y ) \operatorname{replace}(l,r,x,y) replace(l,r,x,y):将 a l ∼ a r a_l\sim a_r alar 中的所有 x x x 替换为 y y y.
  • kth ⁡ ( l , r , k ) \operatorname{kth}(l,r,k) kth(l,r,k):求 a l ∼ a r a_l\sim a_r alar 中的第 k k k 小值.

Limitations

1 ≤ n , m , a i , x , y ≤ 10 5 1\le n,m,a_i,x,y\le 10^5 1n,m,ai,x,y105
1 ≤ l ≤ r ≤ n 1\le l\le r\le n 1lrn
1 s , 512 MB \textcolor{red}{1\text{s}},512\text{MB} 1s,512MB

Solution

很奇怪的操作,考虑给序列 a a a 分块.
由于要查询第 k k k 小,再给值域 [ 1 , 10 5 ] [1,10^5] [1,105] 分块.
预处理两个数组:

  • f i , j f_{i,j} fi,j:第 1 ∼ i 1\sim i 1i序列块中, j j j 的出现次数.
  • g i , j g_{i,j} gi,j:第 1 ∼ i 1\sim i 1i序列块中,第 j j j值域块内数的的出现次数.

并在每块挂上一个 vector 存储该块的操作,重构块时,遍历 vector 计算出 to i \textit{to}_i toi 表示 i i i 这个数值最终会变成什么,然后直接在 a a a 上修改,并把 vector 清空.

考虑修改,对于整块,我们直接把操作塞入对应块的 vector 中;对于散块,我们暴力替换.
当然 f f f g g g 也要更新,所以替换时需要记录 t i t_i ti 表示第 i i i 块内的替换次数,在所有块修改完后更新这两个数组.

接着考虑查询,我们先对每个 i i i 求出第 i i i值域块内数在 a l ∼ a r a_l\sim a_r alar 的出现次数,然后定出第 k k k 小值所在的值域块.
接着再求出数值 i i i a l ∼ a r a_l\sim a_r alar 的出现次数,再在上一步确定的值域块内找出真正的第 k k k 小值.
此时 f f f g g g 就发挥了作用,因为要求出连续整块内一个数(或一个值域块内数)的出现次数.(散块就直接暴力装桶)

至此就想完了,然而本题很毒瘤(又难写又卡常),注意以下几点:

  • 块长取 350 350 350 左右,太小会爆空间.
  • 注意区分序列块值域块.
  • x = y x=y x=y 的修改直接忽略.
  • 不要开太多 vector,要加快读快写.
  • 注意优化清空过程.

Code

4.65 KB , 5.78 s , 204.49 MB    (in   total,   C++20   with   O2) 4.65\text{KB},5.78\text{s},204.49\text{MB}\;\texttt{(in total, C++20 with O2)} 4.65KB,5.78s,204.49MB(in total, C++20 with O2)
常数很大,最大点要 0.81 s \textcolor{red}{0.81\text{s}} 0.81s.

#include <bits/stdc++.h>
using namespace std;

using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;

template<class T>
bool chmax(T &a, const T &b){
	if(a < b){ a = b; return true; }
	return false;
}

template<class T>
bool chmin(T &a, const T &b){
	if(a > b){ a = b; return true; }
	return false;
}

namespace fastio {}
using fastio::read;
using fastio::write;

constexpr int B = 350, V = 1e5 + 10, M = (V + B - 1) / B;
using pii = pair<int, int>;

namespace pool {
	constexpr int L = 4e7 + 10;
	int P[L], *ptr = P;
	
	inline int* alloc(int n) {
		int* res = ptr;
		ptr += n;
		return res;
	}
}
using pool::alloc;

signed main() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
	
	const int n = read<int>(), q = read<int>();
	const int blocks = (n + B - 1) / B;
	
	int* a = alloc(n);
	for (int i = 0; i < n; i++) a[i] = read<int>();
	
	int *bel = alloc(V), *to = alloc(V), *L = alloc(blocks), *R = alloc(blocks), *tmp = alloc(V);
	vector<int*> f(blocks), g(blocks);
	vector<vector<pii>> mdf(blocks);
	
	for (int i = 0; i < blocks; i++) f[i] = alloc(V), g[i] = alloc(M);
	
	auto init = [&]() {
		for (int i = 0; i < V; i++) {
			bel[i] = i / B;
			to[i] = i;
		}
		
		for (int i = 0; i < blocks; i++) {
			L[i] = i * B;
			R[i] = min(L[i] + B, n) - 1;
			
			if (i > 0) {
				for (int j = 0; j < V; j++) f[i][j] = f[i - 1][j];
				for (int j = 0; j < M; j++) g[i][j] = g[i - 1][j];
			}
			
			for (int j = L[i]; j <= R[i]; j++) {
				f[i][a[j]]++;
				g[i][bel[a[j]]]++;
			}
		}
	};
	
	vector<int> vec;
	vec.reserve(q << 1);
	
	auto refact = [&](int b) {
		vec.clear();
		vector<pii> & opr = mdf[b];
		reverse(opr.begin(), opr.end());
		
		for (auto & [x, y] : opr) {
			to[x] = to[y];
			vec.push_back(x);
			vec.push_back(y);
		}
		
		for (int i = L[b]; i <= R[b]; i++) a[i] = to[a[i]];
		
		for (auto x : vec) to[x] = x;
		opr.clear();
	};
	
	auto brute_replace = [&](int b, int l, int r, int x, int y) {
		refact(b);
		for (int i = l; i <= r; i++)
		    if (a[i] == x) {
		    	a[i] = y;
		    	tmp[b]++;
		    }
	};
	
	auto block_replace = [&](int b, int x, int y) {
		mdf[b].emplace_back(x, y);
		tmp[b] = f[b][x] - f[b - 1][x];
	};
	
	auto update = [&](int b, int x, int y) {
		for (int i = b; i < blocks; i++) {
			if (i > 0) tmp[i] += tmp[i - 1];
			f[i][x] -= tmp[i], f[i][y] += tmp[i];
			g[i][bel[x]] -= tmp[i], g[i][bel[y]] += tmp[i];
		}
	};
	
	auto replace = [&](int l, int r, int x, int y) {
        if (x == y) return;
		const int bl = bel[l], br = bel[r];
		for (int i = 0; i < blocks; i++) tmp[i] = 0;
		
		if (bl == br) brute_replace(bl, l, r, x, y);
		else {
			brute_replace(bl, l, R[bl], x, y);
			brute_replace(br, L[br], r, x, y);
			for (int i = bl + 1; i < br; i++) block_replace(i, x, y);
		}
		
		update(bl, x, y);
	};
	
	auto _push = [&](int l, int r, int t) {
		for (int i = l; i <= r; i++) {
			if (t == 0) tmp[bel[a[i]]]++;
			else tmp[a[i]]++;
		}
	};
	
	auto push = [&](int l, int r, int bl, int br, int t) {
		if (bl == br) _push(l, r, t);
		else _push(l, R[bl], t), _push(L[br], r, t);
	};
	
	auto kth = [&](int l, int r, int k) -> int {
		const int bl = bel[l], br = bel[r];
		refact(bl);
		if (bl ^ br) refact(br);
		
		for (int i = 0; i < M; i++) tmp[i] = (bl ^ br) ? (g[br - 1][i] - g[bl][i]) : 0;
		push(l, r, bl, br, 0);
		
		int sum = 0, blk = -1;
		for (int i = 0; i < M; i++) {
			sum += tmp[i];
			if (sum >= k) {
				blk = i;
				sum -= tmp[i];
				break;
			}
		}
		
		if (blk == -1) return -1;
		const int fl = blk * B, fr = min(fl + B, V) - 1;
		
		for (int i = fl; i <= fr; i++) tmp[i] = (bl ^ br) ? (f[br - 1][i] - f[bl][i]) : 0;
		push(l, r, bl, br, 1);

		for (int i = fl; i <= fr; i++) {
			sum += tmp[i];
			if (sum >= k) return i;
		}
		return -1;
	};
	
	init();
	for (int i = 0, op, l, r, x, y; i < q; i++) {
		op = read<int>(), l = read<int>(), r = read<int>(), x = read<int>();
		l--, r--;
		if (op == 1) y = read<int>(), replace(l, r, x, y);
		else {
			write(kth(l, r, x));
			putchar_unlocked('\n');
		}
	}
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值