Description
给定长为 n n n 的序列 a = ( a 1 , a 2 , ⋯ , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,⋯,an),有 m m m 个操作,分以下两种:
- modify ( l , r , k ) \operatorname{modify}(l,r,k) modify(l,r,k):对于所有 i ∈ [ l , r ] i \in [l,r] i∈[l,r],执行 a i ← a i − k × [ a i ≠ k ] a_i \leftarrow a_i -k\times[a_i \neq k] ai←ai−k×[ai=k].
- query ( l , r ) \operatorname{query}(l,r) query(l,r):求 ( ∑ i = l r a i ) m o d 2 64 (\sum\limits_{i=l}^r a_i) \bmod 2^{64} (i=l∑rai)mod264.
Limitations
本题强制在线
1
≤
n
,
m
≤
5
×
1
0
5
1 \le n,m \le 5\times 10^5
1≤n,m≤5×105
1
≤
l
≤
r
≤
n
1 \le l \le r \le n
1≤l≤r≤n
0
≤
a
i
,
k
≤
1
0
9
0 \le a_i,k \le 10^9
0≤ai,k≤109
6
s
,
512
MB
6\text{s},512\text{MB}
6s,512MB
Solution
考虑上线段树,但
a
i
≠
x
a_i \neq x
ai=x 很棘手,先分讨一下.
下面设线段树当前节点的最小值为
u
u
u.
若
u
>
k
u > k
u>k,直接打标记即可.
若
u
<
k
u < k
u<k,遍历所有
u
<
k
u < k
u<k 的儿子进行修改,由于每个数至多只会修改一次,所以这部分耗费
O
(
log
n
)
\mathcal{O}(\log n)
O(logn) 时间(单次操作).
若
u
=
k
u = k
u=k,发现很难搞,考虑维护次小值
v
v
v.
- v > 2 k v > 2k v>2k,次小值无法变成最小值,打上最小值以外的数减去 k k k 的标记即可.
- v ≤ 2 k v \le 2k v≤2k,次小值会变成最小值,暴力遍历儿子进行更新,由于 v − k ≤ v 2 v-k \le \frac{v}{2} v−k≤2v,所以 v v v 每次至少减半,这部分耗费 O ( log n log V ) \mathcal{O}(\log n \log V) O(lognlogV) 时间.
综上述,时间复杂度 O ( n log n log V ) \mathcal{O}(n\log n \log V) O(nlognlogV)。
Code
4.59
KB
,
12.96
s
,
55.88
MB
(in
total,
C++
20
with
O2)
4.59\text{KB},12.96\text{s},55.88\text{MB}\; \texttt{(in total, C++ 20 with O2)}
4.59KB,12.96s,55.88MB(in total, C++ 20 with O2)
这是重构过的,比第一份少了约
6
s
6\text{s}
6s.
// Problem: P9069 [Ynoi Easy Round 2022] 堕天作战 TEST_98
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P9069
// Memory Limit: 512 MB
// Time Limit: 6000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){ a = b; return true; }
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(a > b){ a = b; return true; }
return false;
}
constexpr ui64 inf = ULLONG_MAX;
namespace seg_tree {
struct Node {
int l, r, cnt;
ui64 sum, min, sec, tag, mark;
};
inline int ls(int u) { return 2 * u + 1; }
inline int rs(int u) { return 2 * u + 2; }
struct SegTree {
vector<Node> tr;
inline SegTree() {}
inline SegTree(const vector<int>& a) {
const int n = a.size();
tr.resize(n << 1);
build(0, 0, n - 1, a);
}
inline void pushup(int u, int mid) {
tr[u].sum = tr[ls(mid)].sum + tr[rs(mid)].sum;
if (tr[ls(mid)].min == tr[rs(mid)].min) {
tr[u].min = tr[ls(mid)].min;
tr[u].cnt = tr[ls(mid)].cnt + tr[rs(mid)].cnt;
tr[u].sec = min(tr[ls(mid)].sec, tr[rs(mid)].sec);
}
else if (tr[ls(mid)].min < tr[rs(mid)].min) {
tr[u].min = tr[ls(mid)].min;
tr[u].cnt = tr[ls(mid)].cnt;
tr[u].sec = min(tr[ls(mid)].sec, tr[rs(mid)].min);
}
else {
tr[u].min = tr[rs(mid)].min;
tr[u].cnt = tr[rs(mid)].cnt;
tr[u].sec = min(tr[ls(mid)].min, tr[rs(mid)].sec);
}
}
inline void apply_tag(int u, ui64 tag) {
int len = tr[u].r - tr[u].l + 1;
tr[u].sum -= tag * len;
tr[u].min -= tag;
tr[u].sec -= tag;
tr[u].tag += tag;
}
inline void apply_mark(int u, ui64 tag) {
const int len = tr[u].r - tr[u].l + 1;
tr[u].sum -= tag * (len - tr[u].cnt);
tr[u].sec -= tag;
tr[u].mark += tag;
}
inline void pushdown(int u, int mid) {
if (tr[u].tag) {
apply_tag(ls(mid), tr[u].tag);
apply_tag(rs(mid), tr[u].tag);
tr[u].tag = 0;
}
if (tr[u].mark) {
if (tr[ls(mid)].min == tr[u].min) apply_mark(ls(mid), tr[u].mark);
else apply_tag(ls(mid), tr[u].mark);
if (tr[rs(mid)].min == tr[u].min) apply_mark(rs(mid), tr[u].mark);
else apply_tag(rs(mid), tr[u].mark);
tr[u].mark = 0;
}
}
inline void build(int u, int l, int r, const vector<int>& a) {
tr[u].l = l, tr[u].r = r;
if (l == r) {
tr[u].sum = tr[u].min = a[l];
tr[u].cnt = 1;
tr[u].sec = inf;
return;
}
const int mid = (l + r) >> 1;
build(ls(mid), l, mid, a);
build(rs(mid), mid + 1, r, a);
pushup(u, mid);
}
inline void defeat(int u, ui64 val) {
const int len = tr[u].r - tr[u].l + 1;
if (tr[u].min == val && len == tr[u].cnt) return;
if (tr[u].l == tr[u].r) {
tr[u].sum -= val;
tr[u].min = tr[u].sum;
return;
}
if (tr[u].min < val || tr[u].sec <= val * 2) {
const int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(u, mid);
defeat(ls(mid), val);
defeat(rs(mid), val);
return pushup(u, mid);
}
if (tr[u].min == val) apply_mark(u, val);
else apply_tag(u, val);
}
inline void modify(int u, int l, int r, ui64 val) {
if (l <= tr[u].l && tr[u].r <= r) return defeat(u, val);
const int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(u, mid);
if (l <= mid) modify(ls(mid), l, r, val);
if (r > mid) modify(rs(mid), l, r, val);
pushup(u, mid);
}
inline ui64 query(int u, int l, int r) {
if (l <= tr[u].l && tr[u].r <= r) return tr[u].sum;
const int mid = (tr[u].l + tr[u].r) >> 1;
ui64 res = 0;
pushdown(u, mid);
if (l <= mid) res += query(ls(mid), l, r);
if (r > mid) res += query(rs(mid), l, r);
return res;
}
inline void range_subtract(int l, int r, ui64 x) { modify(0, l, r, x); }
inline ui64 range_sum(int l, int r) { return query(0, l, r); }
};
}
using seg_tree::SegTree;
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n, m; scanf("%d %d", &n, &m);
vector<int> a(n);
for (int i = 0; i < n; i++) scanf("%d", &a[i]);
SegTree sgt(a);
ui64 lst = 0;
for (int i = 0, op, l, r, x; i < m; i++) {
scanf("%d %d %d", &op, &l, &r);
l ^= lst, r ^= lst, l--, r--;
if (op == 1) {
scanf("%d", &x), x ^= lst;
if (x != 0) sgt.range_subtract(l, r, (ui64)x);
}
else {
printf("%llu\n", lst = sgt.range_sum(l, r));
lst &= 1048575;
}
}
return 0;
}