P9069 [Ynoi Easy Round 2022] 堕天作战 TEST_98 Solution

Description

给定长为 n n n 的序列 a = ( a 1 , a 2 , ⋯   , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,,an),有 m m m 个操作,分以下两种:

  • modify ⁡ ( l , r , k ) \operatorname{modify}(l,r,k) modify(l,r,k):对于所有 i ∈ [ l , r ] i \in [l,r] i[l,r],执行 a i ← a i − k × [ a i ≠ k ] a_i \leftarrow a_i -k\times[a_i \neq k] aiaik×[ai=k].
  • query ⁡ ( l , r ) \operatorname{query}(l,r) query(l,r):求 ( ∑ i = l r a i )   m o d   2 64 (\sum\limits_{i=l}^r a_i) \bmod 2^{64} (i=lrai)mod264.

Limitations

本题强制在线
1 ≤ n , m ≤ 5 × 1 0 5 1 \le n,m \le 5\times 10^5 1n,m5×105
1 ≤ l ≤ r ≤ n 1 \le l \le r \le n 1lrn
0 ≤ a i , k ≤ 1 0 9 0 \le a_i,k \le 10^9 0ai,k109
6 s , 512 MB 6\text{s},512\text{MB} 6s,512MB

Solution

考虑上线段树,但 a i ≠ x a_i \neq x ai=x 很棘手,先分讨一下.
下面设线段树当前节点的最小值为 u u u.
u > k u > k u>k,直接打标记即可.
u < k u < k u<k,遍历所有 u < k u < k u<k 的儿子进行修改,由于每个数至多只会修改一次,所以这部分耗费 O ( log ⁡ n ) \mathcal{O}(\log n) O(logn) 时间(单次操作).
u = k u = k u=k,发现很难搞,考虑维护次小值 v v v.

  • v > 2 k v > 2k v>2k,次小值无法变成最小值,打上最小值以外的数减去 k k k 的标记即可.
  • v ≤ 2 k v \le 2k v2k,次小值会变成最小值,暴力遍历儿子进行更新,由于 v − k ≤ v 2 v-k \le \frac{v}{2} vk2v,所以 v v v 每次至少减半,这部分耗费 O ( log ⁡ n log ⁡ V ) \mathcal{O}(\log n \log V) O(lognlogV) 时间.

综上述,时间复杂度 O ( n log ⁡ n log ⁡ V ) \mathcal{O}(n\log n \log V) O(nlognlogV)

Code

4.59 KB , 12.96 s , 55.88 MB    (in   total,   C++   20   with   O2) 4.59\text{KB},12.96\text{s},55.88\text{MB}\; \texttt{(in total, C++ 20 with O2)} 4.59KB,12.96s,55.88MB(in total, C++ 20 with O2)
这是重构过的,比第一份少了约 6 s 6\text{s} 6s.

// Problem: P9069 [Ynoi Easy Round 2022] 堕天作战 TEST_98
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P9069
// Memory Limit: 512 MB
// Time Limit: 6000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
using namespace std;

using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;

template<class T>
bool chmax(T &a, const T &b){
	if(a < b){ a = b; return true; }
	return false;
}

template<class T>
bool chmin(T &a, const T &b){
	if(a > b){ a = b; return true; }
	return false;
}

constexpr ui64 inf = ULLONG_MAX;

namespace seg_tree {
	struct Node {
	    int l, r, cnt;
	    ui64 sum, min, sec, tag, mark;
	};
	
	inline int ls(int u) { return 2 * u + 1; }
	inline int rs(int u) { return 2 * u + 2; }
	
	struct SegTree {
		vector<Node> tr;
		inline SegTree() {}
		inline SegTree(const vector<int>& a) {
			const int n = a.size();
			tr.resize(n << 1);
			build(0, 0, n - 1, a);
		}
		
		inline void pushup(int u, int mid) {
		    tr[u].sum = tr[ls(mid)].sum + tr[rs(mid)].sum;
		    if (tr[ls(mid)].min == tr[rs(mid)].min) {
				tr[u].min = tr[ls(mid)].min;
				tr[u].cnt = tr[ls(mid)].cnt + tr[rs(mid)].cnt;
				tr[u].sec = min(tr[ls(mid)].sec, tr[rs(mid)].sec);
			}
			else if (tr[ls(mid)].min < tr[rs(mid)].min) {
			    tr[u].min = tr[ls(mid)].min;
			    tr[u].cnt = tr[ls(mid)].cnt;
			    tr[u].sec = min(tr[ls(mid)].sec, tr[rs(mid)].min);
			}
			else {
			    tr[u].min = tr[rs(mid)].min;
			    tr[u].cnt = tr[rs(mid)].cnt;
			    tr[u].sec = min(tr[ls(mid)].min, tr[rs(mid)].sec);
			}
		}
		
		inline void apply_tag(int u, ui64 tag) {
		    int len = tr[u].r - tr[u].l + 1;
		    tr[u].sum -= tag * len;
		    tr[u].min -= tag;
		    tr[u].sec -= tag;
		    tr[u].tag += tag;
		}
		
		inline void apply_mark(int u, ui64 tag) {
		    const int len = tr[u].r - tr[u].l + 1;
		    tr[u].sum -= tag * (len - tr[u].cnt);
		    tr[u].sec -= tag;
		    tr[u].mark += tag;
		}
		
		inline void pushdown(int u, int mid) {
		    if (tr[u].tag) { 
		        apply_tag(ls(mid), tr[u].tag);
		        apply_tag(rs(mid), tr[u].tag);
		        tr[u].tag = 0;
		    }
			if (tr[u].mark) {
				if (tr[ls(mid)].min == tr[u].min) apply_mark(ls(mid), tr[u].mark);
				else apply_tag(ls(mid), tr[u].mark);
				if (tr[rs(mid)].min == tr[u].min) apply_mark(rs(mid), tr[u].mark);
				else apply_tag(rs(mid), tr[u].mark);
				tr[u].mark = 0;
			}
		}
		
		inline void build(int u, int l, int r, const vector<int>& a) {
		    tr[u].l = l, tr[u].r = r;
			if (l == r) {
			    tr[u].sum = tr[u].min = a[l];
			    tr[u].cnt = 1;
			    tr[u].sec = inf;
			    return;
			}
			const int mid = (l + r) >> 1;
			build(ls(mid), l, mid, a);
			build(rs(mid), mid + 1, r, a);
			pushup(u, mid);
		}
		
		inline void defeat(int u, ui64 val) {
		    const int len = tr[u].r - tr[u].l + 1;
		    if (tr[u].min == val && len == tr[u].cnt) return;
			if (tr[u].l == tr[u].r) {
			    tr[u].sum -= val;
			    tr[u].min = tr[u].sum;
			    return;
			}
			if (tr[u].min < val || tr[u].sec <= val * 2) {
				const int mid = (tr[u].l + tr[u].r) >> 1;
				pushdown(u, mid);
				defeat(ls(mid), val);
				defeat(rs(mid), val);
				return pushup(u, mid);
			}
			if (tr[u].min == val) apply_mark(u, val);
			else apply_tag(u, val);
		}
		
		inline void modify(int u, int l, int r, ui64 val) {
		    if (l <= tr[u].l && tr[u].r <= r) return defeat(u, val);
		    const int mid = (tr[u].l + tr[u].r) >> 1;
			pushdown(u, mid);
			if (l <= mid) modify(ls(mid), l, r, val);
			if (r > mid) modify(rs(mid), l, r, val);
			pushup(u, mid);
		}
		
		inline ui64 query(int u, int l, int r) {
		    if (l <= tr[u].l && tr[u].r <= r) return tr[u].sum;
		    const int mid = (tr[u].l + tr[u].r) >> 1;
		    ui64 res = 0;
			pushdown(u, mid);
			if (l <= mid) res += query(ls(mid), l, r);
			if (r > mid) res += query(rs(mid), l, r);
			return res;
		}
		
		inline void range_subtract(int l, int r, ui64 x) { modify(0, l, r, x); }
		inline ui64 range_sum(int l, int r) { return query(0, l, r); }
	};
}
using seg_tree::SegTree;

signed main() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
	
	int n, m; scanf("%d %d", &n, &m);
	vector<int> a(n);
	for (int i = 0; i < n; i++) scanf("%d", &a[i]);
	
	SegTree sgt(a);
	ui64 lst = 0;
	for (int i = 0, op, l, r, x; i < m; i++) {
	    scanf("%d %d %d", &op, &l, &r);
	    l ^= lst, r ^= lst, l--, r--;
	    if (op == 1) {
	        scanf("%d", &x), x ^= lst;
	        if (x != 0) sgt.range_subtract(l, r, (ui64)x);
	    }
	    else {
	        printf("%llu\n", lst = sgt.range_sum(l, r));
	        lst &= 1048575;
	    }
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值