codeforces 459E

题意:给出一个有向图,要求找一个权值严格递增的最长路径,输出边的条数

思路:如果没要求严格递增就是一道比较水的题直接按权值排个序,然后dp[v]=max(dp[v], dp[u]+1),然这里就是要求严格递增,那么关键问题还是在于处理权值相同的边,还是先按权值从小到大排一个序,然后把权值相同的统一拿出来更新,用dis更新u这个点,每次处理玩后就更新以某个点结束的最大路径、主要是理解为什么把权值相同的拿出来,为什么要先更新最大值之后再去维护以某个点结束的最大路径、

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int qq = 300000+10;
struct Edge{
	Edge(){
	}
	Edge(int a, int b, int c):u(a),v(b),w(c){
		
	}
	bool operator < (const Edge &d)const{
	//	if(u==d.u)	return v<d.v;
	//	return u<d.u;
		return w<d.w;
	}
	int u,v;
	int w;
}edge[qq];
int dp[qq];			//更新答案、 
int dis[qq];		//维护以点i为终止点时的最大边数、 
int main(){
	int n,m;scanf("%d%d",&n,&m);
	int a,b,c;
	for(int i=0; i<m; ++i){
		scanf("%d%d%d",&a,&b,&c);
		edge[i]=Edge(a, b, c);
	}
	sort(edge, edge+m);
	memset(dp, 0, sizeof(dp));
	memset(dis, 0, sizeof(dis));
	for(int i=0; i<m; ++i){
		int j;
		for(j=i; edge[i].w==edge[j].w; ++j);
		//printf("%d\n", j);
		for(int k=i; k<j; ++k)	//当把权值相同的更新完以后再去维护以某个点为终止点的最大值、 
			dp[edge[k].v] = max(dp[edge[k].v], dis[edge[k].u]+1);
		for(int k=i; k<j; ++k)
			dis[edge[k].v] = dp[edge[k].v];
		i = j-1;
	}
	int maxn=0;
	for(int i=1; i<=n; ++i)
		maxn = max(maxn, dis[i]);
	printf("%d\n", maxn);
	return 0;
}


### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值