105. Construct Binary Tree from Preorder and Inorder Traversal
Given preorder and inorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.
解法一
前序遍历的第一个节点就是根节点,在中序遍历中找到根节点所在的位置,比如M,中序遍历的0 - M-1的节点属于左子树,M+1 - inorder.length - 1属于右子树。
按照该方法进行dfs。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
if ((preorder == null || preorder.length == 0) && (inorder == null || inorder.length == 0)){
return null;
}
return helper(0, 0, inorder.length - 1, preorder, inorder);
}
private TreeNode helper(int preStart, int inStart, int inEnd, int[] preorder, int[] inorder) {
if (preStart > preorder.length - 1 || inStart > inEnd) {
return null;
}
TreeNode root = new TreeNode(preorder[preStart]);
int inIndex = 0; // index of current root in inorder
for (int i = inStart; i <= inEnd; i++) {
if (inorder[i] == root.val) {
inIndex = i;
}
}
root.left = helper(preStart + 1, inStart, inIndex - 1, preorder, inorder);
root.right = helper(preStart + inIndex - inStart + 1, inIndex + 1, inEnd, preorder, inorder);
return root;
}
}
解法二
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
if ((preorder == null || preorder.length == 0) && (inorder == null || inorder.length == 0)){
return null;
}
return helper(preorder, 0, preorder.length - 1, inorder, 0, inorder.length - 1);
}
private TreeNode helper(int[] preorder, int preStart, int preEnd, int[] inorder, int inStart, int inEnd) {
if (preStart > preEnd || inStart > inEnd) {
return null;
}
TreeNode root = new TreeNode(preorder[preStart]);
int inIndex = 0; // index of current root in inorder
for (int i = inStart; i <= inEnd; i++) {
if (inorder[i] == root.val) {
inIndex = i;
}
}
root.left = helper(preorder, preStart + 1, preStart + inIndex - inStart, inorder, inStart, inIndex - 1);
root.right = helper(preorder, preStart + inIndex - inStart + 1, preEnd, inorder, inIndex + 1, inEnd);
return root;
}
}

本文介绍了一种从给定的前序和中序遍历序列构建二叉树的方法。通过递归地寻找根节点,并确定左右子树的范围,最终构建完整的二叉树结构。
355

被折叠的 条评论
为什么被折叠?



