回归模型中的高级主题与实用技术
1. 利用基于模型的预测说明模型
在各类回归模型中,我们通常将每个研究对象的某个感兴趣的量建模为协变量的(线性)函数。在经典回归模型中,这个量是结果的期望值;在逻辑回归模型中,是 $Y = 1$ 的概率(在对数优势比尺度上);在 Cox 模型中,是在时间 $t$ 存活的条件下,在时间 $t$ 死亡的风险(的对数)。
当我们拟合一个回归模型并得到回归参数的估计值后,就可以通过将估计值代入模型方程,为每个研究对象计算感兴趣量的估计值。这种计算得到的数值常被称为“预测值”。目前,我们将这些预测值作为说明模型某些方面的技术工具。
1.1 添加拟合回归直线
一个简单的说明模型的例子是将拟合的回归直线添加到数据中。例如,在某些情况下,直线就是根据拟合模型依赖于协变量值的预测值。在逻辑回归模型中,预测值会以概率尺度显示。
1.2 查看预测值分布
另一种有用的说明方式是计算数据集中所有研究对象的预测值,并查看这些值的分布。通过这种方式,我们可以判断模型区分不同研究对象的能力。以数据集 allergy2 为例,我们可以根据拟合模型为每个孩子计算患过敏症的概率。可视化这些概率值的分布后,我们可以发现该模型能够识别出风险低于 0.2 的低风险儿童和风险高于 0.5 的高风险儿童。然而,绝大多数孩子的风险在 0.2 到 0.35 之间,变化相当有限。因此,尽管该模型在研究四个协变量的影响方面非常有用,但在将所有孩子明确划分为低风险或高风险类别方面并不实用。
2. 在 Stata 中使用预测值
Stata 提供了 pre
超级会员免费看
订阅专栏 解锁全文
2292

被折叠的 条评论
为什么被折叠?



