class Solution {
public:
int minCut(string s) {
int n = s.size();
vector<vector<int> > dp(n, vector<int>(n, 0));
// len == 1
for (int i = 0; i < n; ++i) {
dp[i][i] = 1;
}
// len == 2
for (int i = 1; i < n; ++i) {
if(s[i] == s[i - 1])
dp[i - 1][i] = 1;
}
// len >= 3
for (int len = 3; len <= n; ++len) {
for (int i = 0; i != n - len + 1; ++i) {
if (s[i] == s[i + len - 1] && dp[i + 1][i + len - 2] == 1)
dp[i][i + len - 1] = 1;
}
}
// the mincut
vector<int> min_dp(n, INT_MAX); // with a dummy head
for (int i = 0; i != n; ++i) {
if (dp[0][i] == 1) {
min_dp[i] = 0;
continue;
}
for (int j = 1; j <= i; ++j) {
if (dp[j][i] == 1) {
min_dp[i] = min(min_dp[i], 1 + min_dp[j - 1]);
}
}
}
return min_dp[n - 1];
}
};
参考后
在处理第i个的时候可确保i之前(含i)的数据是确定的minCut, i之后的不一定
class Solution {
public:
int minCut(string s) {
int n = s.size();
// the mincut
vector<int> min_dp(n + 1); // with a dummy head
min_dp[0] = -1;
for (int i = 1; i <= n; ++i)
min_dp[i] = i - 1;
for (int i = 0; i != n; ++i) {
for (int j = 0; i - j >= 0 && i + j < n && s[i - j] == s[i + j]; ++j) {
min_dp[i + j + 1] = min(min_dp[i + j + 1], min_dp[i - j] + 1);
}
for (int j = 0; i - j >= 0 && i + j + 1 < n && s[i - j] == s[i + j + 1]; ++j) {
min_dp[i + j + 2] = min(min_dp[i + j + 2], min_dp[i - j] + 1);
}
}
return min_dp[n];
}
};