题目
Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
Example:
Input: "aab"
Output: 1
Explanation: The palindrome partitioning ["aa","b"] could be produced using 1 cut.
思路与解法
此题目要求我们计算将字符串s
切分为回文子串的最小切割次数。
对于题目中的样例字符串"aab"
,我们想要得到该字符串的最小切分次数,首先需要判断字符串是否为回文序列,如果该字符串为回文序列,那么万事大吉。然而,大多数情况下输入字符串是不可能为回文序列的,所以我们需要进行切分操作,即我们需要找到该字符串的连续回文子串的最少个数,但是最开始我们需要得到一个字符串是否满足回文。
我们可以采用动态规划的思想来解决该问题,首先定义以下dp数组:
dp[i][j]
表示从s[i:j+1]
(左闭右开)是否为回文序列,如果是回文序列,则dp[i][j]=1
;否则dp[i][j]=0
。
同时,可以推出状态转移方程为:
// 情况1:i+1 == j (长度等于2的子串)
if s[i] == s[j] {
dp[i][j] = 1
}
// 情况1:i+1 < j (长度大于2的子串)
if dp[i+1][j-1] == 1 && s[i] == s[j] {
dp[i][j] = 1
}
此时,我们得到了字符串s的所有子串是否满足回文的dp
数组:时间复杂度为
O
(
N
2
)
O(N^2)
O(N2)。相比较于循环遍历字符串并首尾判断回文的方法要快上许多,后者复杂度为
O
(
N
3
)
O(N^3)
O(N3)。
之后,我们需要计算将该字符串切分所需要的最少切分数,定义如下数组,minCuts[i]
表示字符串s[:i](前i个字符,minCuts下标从1~len(s),与dp数组下标范围不同)切分为回文子串的最小切分数,则状态转移方程为:
// 下属if条件句中,j<i
// dp[j-1][i-1]为1,表示s[j-1:i](左闭右开)为回文序列
if dp[j-1][i-1] == 1 && minCuts[i] > minCuts[j-1] + 1 {
minCuts[i] = minCuts[j-1] + 1
}
代码实现(Go)
const INT_MAX = int(^uint(0) >> 1)
func minCut(s string) int {
lenS := len(s)
dp := make([][]int, lenS)
minCuts := make([]int, lenS+10)
// 初始化dp数组,dp[i][i]=1
// 初始化minCuts[2~lenS] = INT_MAX
for i:=0; i<lenS; i++ {
dp[i] = make([]int, lenS)
dp[i][i] = 1
minCuts[i+1] = INT_MAX
}
// 长度为0的字符串最小切分数设置为-1;长度为1的字符串最小切分数设置为0
minCuts[0] = -1
minCuts[1] = 0
// 注意循环的顺序,j在外层
// 简单讲是因为dp[0][lenS]应该在已知dp[1][lenS-1]后在计算获得
for j:=0; j<lenS; j++ {
for i:=0; i<lenS; i++ {
if j > i {
if dp[i+1][j-1]==1 && s[i] == s[j] {
dp[i][j] = 1
} else if i+1==j && s[i] == s[j] {
dp[i][j] = 1
}
}
}
}
// 获得minCuts,为方便处理边界,我将minCuts的下标定义为1~lenS
for i:=1; i<=lenS; i++ {
for j:=1; j<=i; j++ {
if dp[j-1][i-1] == 1 && minCuts[i] > minCuts[j-1] + 1 {
minCuts[i] = minCuts[j-1] + 1
}
}
}
return minCuts[lenS]
}
运行结果
总体时间复杂度为
O
(
N
2
)
O(N^2)
O(N2):
递归解法
最初我采用递归来实现(dp数组计算方法同上),递归更加容易理解,我们在计算s的最小切分数时,求得s[:k]
、s[k:]
(其中1<=k<lenS
)最小切分数之和得最小值,即为s得最小切分数。
for k:=i+1; k<=j; k++ {
cuts1 := getMinCuts(i, k-1, s)
cuts2 := getMinCuts(k, j, s)
if cuts1 + cuts2 + 1 < minCuts {
minCuts = cuts1 + cuts2 + 1
}
}
但是,上述方法中做了许多无用的计算(并不能通过后三组数据),不满足dp[i][k-1]==1
得计算时多余的,所以我进行了改进:
const INT_MAX = int(^uint(0) >> 1)
var cutsMap map[string]int
var dp [][]int
func getMinCuts(i, j int, s string) int{
if cutsMap[s[i:j+1]]!=0 {
return cutsMap[s[i:j+1]]
}
if dp[i][j] == 1 {
return 0
}
minCuts := INT_MAX
for k:=i+1; k<=j; k++ {
if dp[i][k-1] == 1 {
cuts := getMinCuts(k, j, s)
if cuts + 1 < minCuts {
minCuts = cuts + 1
}
}
}
cutsMap[s[i:j+1]] = minCuts
return minCuts
}
func minCut(s string) int {
cutsMap = make(map[string]int)
lenS := len(s)
dp = make([][]int, lenS)
for i:=0; i<lenS; i++ {
dp[i] = make([]int, lenS)
dp[i][i] = 1
}
for j:=0; j<lenS; j++ {
for i:=0; i<lenS; i++ {
if j > i {
if dp[i+1][j-1]==1 && s[i] == s[j] {
dp[i][j] = 1
} else if i+1==j && s[i] == s[j] {
dp[i][j] = 1
}
}
}
}
return getMinCuts(0, lenS-1, s)
}