Python实现线性逻辑回归和非线性逻辑回归

线性逻辑回归

# -*- coding: utf-8 -*-
"""
Created on 2024.2.20

@author: rubyw
"""

import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import classification_report
from sklearn import preprocessing
from sklearn import linear_model

# 数据是否需要标准化
scale = False

# 载入数据
data = np.genfromtxt('data.csv', delimiter=",")
x_data = data[:, :-1]
y_data = data[:, -1]


def plot():
    x0 = []
    x1 = []
    y0 = []
    y1 = []
    # 切分不同类别的数据
    for i in range(len(x_data)):
        if y_data[i] == 0:
            x0.append(x_data[i, 0])
            y0.append(x_data[i, 1])
        else:
            x1.append(x_data[i, 0])
            y1.append(x_data[i, 1])

    # 画图
    scatter0 = plt.scatter(x0, y0,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rubyw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值