Python实现Lasso回归模型

• Tibshirani(1996)提出了Lasso(The Least Absolute Shrinkage and Selectionator operator)算法。
• 通过构造一个一阶惩罚函数获得一个精炼的模型;通过最终确定一些指标(变量)的系数为零(岭回归估计系数等于0的机会微乎其微,造成筛选变量困难),解释力很强。
• 擅长处理具有多重共线性的数据,与岭回归一样是有偏估计。
在这里插入图片描述

# -*- coding: utf-8 -*-
"""
Created on 2024.1.22

@author: rubyw
"""

import numpy as np
from numpy import genfromtxt
from sklearn import linear_model

# 读入数据
data = genfromtxt('longley.csv'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rubyw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值