LintCode 448. Inorder Successor in BST

本文围绕二叉搜索树中给定节点的中序后继展开,给出示例说明查找情况。还介绍了三种解法,包括二分查找(时间复杂度O(logn))、递归写法以及通用的二叉树中序遍历,其中通用遍历未利用BST有序性质。
  1. Inorder Successor in BST
    中文English
    Given a binary search tree (See Definition) and a node in it, find the in-order successor of that node in the BST.

If the given node has no in-order successor in the tree, return null.

Example
Example 1:

Input: tree = {1,#,2}, node value = 1
Output: 2
Explanation:
1

2
Example 2:

Input: tree = {2,1,3}, node value = 1
Output: 2
Explanation:
2
/
1 3
Binary Tree Representation

Challenge
O(h), where h is the height of the BST.

Notice
It’s guaranteed p is one node in the given tree. (You can directly compare the memory address to find p)

解法1:Binary Search。时间复杂度O(logn)。
注意:二分查找的顺序和中序遍历的顺序不一样!!!!!
代码如下。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */


class Solution {
public:
    /*
     * @param root: The root of the BST.
     * @param p: You need find the successor node of p.
     * @return: Successor of p.
     */
    TreeNode * inorderSuccessor(TreeNode * root, TreeNode * p) {
        if (!root) return NULL;
        
        TreeNode * successor = NULL;
        
        while(root) {
            if (p->val >= root->val) {
                root = root->right;
            } else {
                if (!successor || root->val < successor->val) {
                    successor = root;
                }
                root = root->left;
            }
        }
        return successor;
    }
};

另一种写法:
注意:二分查找和Inorder顺序不一样!这里的pre是用作Inorder的Successor!
中序遍历的successor 对应于 二分查找中的最后一次大于p的那个root!

class Solution {
public:
    /*
     * @param root: The root of the BST.
     * @param p: You need find the successor node of p.
     * @return: Successor of p.
     */
    TreeNode * inorderSuccessor(TreeNode * root, TreeNode * p) {
        if (!root || !p) return NULL;
        
        TreeNode *succ = NULL; //注意:二分查找和Inorder顺序不一样!这里的pre是用作Inorder的Successor!
        //中序遍历的successor 对应于 二分查找中的最后一次大于p的那个root!
        while(root) {
            if (root->val <= p->val) {
                root = root->right;
            } else {
                //记住!我们要找到最后一次大于p的那个root!
                succ = root;
                root = root->left;
            }
        }
        return succ;
    }
};

解法2:递归的写法。

class Solution {
public:
    /*
     * @param root: The root of the BST.
     * @param p: You need find the successor node of p.
     * @return: Successor of p.
     */
    TreeNode * inorderSuccessor(TreeNode * root, TreeNode * p) {
        if (!root || !p) return succ;
        
        //注意:二分查找和Inorder顺序不一样!这里的pre是用作Inorder的Successor!
        //中序遍历的successor 对应于 二分查找中的最后一次大于p的那个root!
        if (root->val <= p->val) {
            return inorderSuccessor(root->right, p);
        }
        succ = root;
        return inorderSuccessor(root->left, p);
    }
private:
    TreeNode *succ = NULL;
};

解法3:利用通用的Binary Tree中序遍历。没有用到BST这个性质。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */


class Solution {
public:
    /*
     * @param root: The root of the BST.
     * @param p: You need find the successor node of p.
     * @return: Successor of p.
     */
    TreeNode * inorderSuccessor(TreeNode * root, TreeNode * p) {
        helper(root, p);
        return successor;
    }
private:
    void helper(TreeNode *root, TreeNode *p) {
        if (!root) return;
        helper(root->left, p);

        if (find) {
            successor = root;
            find = false;
            return;
        } else {
            if (root == p) find = true;
        }

        helper(root->right, p);
        
    }
    bool find = false;
    TreeNode * successor = NULL;
};

二刷:也是通用的binary tree中序遍历,没用到BST有序这个性质。


class Solution {
public:
    /*
     * @param root: The root of the BST.
     * @param p: You need find the successor node of p.
     * @return: Successor of p.
     */
    TreeNode * inorderSuccessor(TreeNode * root, TreeNode * p) {
        helper(root, p);
        return succ;
    }
private:
    TreeNode *prev = NULL;
    TreeNode *succ = NULL;
    void helper(TreeNode *root, TreeNode *p) {
        if (!root || succ) return;
        helper(root->left, p);
        if (prev && prev->val == p->val) {
            if (!succ) succ = root;
            return;
        } else {
            prev = root;
        }
        helper(root->right, p);
    }
};
#include <iostream>#include <iostream>using namespace std;struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}};class BST {public:TreeNode* root;BST() : root(nullptr) {}void insert(int val) {TreeNode* newNode = new TreeNode(val);if (!root) {root = newNode;return;}TreeNode* curr = root;while (true) {if (val < curr->val) {if (curr->left)curr = curr->left;else {curr->left = newNode;break;}}else if (val > curr->val) {if (curr->right)curr = curr->right;else {curr->right = newNode;break;}}else {delete newNode; return;}}}TreeNode* findMin(TreeNode* node) {while (node->left) node = node->left;return node;}TreeNode* remove(TreeNode* node, int val) {if (!node) return nullptr;if (val < node->val) {node->left = remove(node->left, val);}else if (val > node->val) {node->right = remove(node->right, val);}else {if (!node->left) {TreeNode* temp = node->right;delete node;return temp;}else if (!node->right) {TreeNode* temp = node->left;delete node;return temp;}else {TreeNode* successor = findMin(node->right);node->val = successor->val;node->right = remove(node->right, successor->val);}}return node;}void inorder(TreeNode* node) {if (node) {inorder(node->left);cout << node->val << " ";inorder(node->right);}}void remove(int val) {root = remove(root, val);}void printInorder() {inorder(root);cout << endl;}};int main() {BST bst;int arr[] = { 4, 9, 0, 1, 8, 6, 3, 5, 2, 7 };int n = sizeof(arr) / sizeof(arr[0]);for (int i = 0; i < n; ++i) {bst.insert(arr[i]);}cout << "初始中序遍历: ";bst.printInorder();// 删除关键字为4的节点bst.remove(4);cout << "删除4后中序遍历: ";bst.printInorder();// 删除关键字为5的节点bst.remove(5);cout << "删除5后中序遍历: ";bst.printInorder();return 0;} 对此代码进行详细解释
最新发布
11-02
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值