To the Max
http://poj.org/problem?id=1050
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output
the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Sample Output
15
解题思路
本题是典型的动态规划,实际是求矩阵的最大子矩阵(和最大)。这是将序列的连续最大段和问题扩展到二维的一题。
序列的最大连续段和问题思路:
原序列a 0 -2 -7 0 9 2 -6 2
记录 b 0 0 0 0 9 11 5 7
结果为11
将这个问题扩展到二维,则先将选中的几行,逐列相加变为一个一维数组。(如果是一行的情况,则直接使用序列的最大连续段和方法)
多行变为一行时:例如
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
当i=0, j=2时,则选择0,1,2行
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
a: 5 1 -17 3
b: 5 6 0 3
答案为3
参考
http://blog.youkuaiyun.com/jqandjq/article/details/5060283
#include <stdio.h>
#include <stdlib.h>
int main (int argc, char const* argv[])
{
int i, j, k, l, n, ans, sum, max;
int a[100][100];
int b[100];
scanf("%d", &n);
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
scanf("%d", &a[i][j]);
}
}
ans = 0;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
if (i == j) {
for (k = 0; k < n; k++) {
b[k] = a[i][k];
}
} else {
for (k = 0; k < n; k++) {
b[k] = 0;
for (l = i; l <= j; l++) {
b[k] += a[l][k];
}
}
}
sum = 0;
max = 0;
for (k = 0; k < n; k++) {
sum += b[k];
if (sum > max) {
max = sum;
}
if (sum < 0) {
sum = 0;
}
}
if (max > ans) {
ans = max;
}
}
}
printf("%d\n", ans);
return 0;
}
132

被折叠的 条评论
为什么被折叠?



