Vision Transformer图像分类实现

PyTorch实现Vision Transformer图像分类

Vision Transformer (ViT) 是一种基于 Transformer 架构的图像分类模型。与传统的卷积神经网络 (CNN) 不同,ViT 将图像分割成多个小块(patches),并将这些小块视为序列输入到 Transformer 中。以下是使用 PyTorch 实现 Vision Transformer 进行图像分类的步骤。

1. 安装必要的库

首先,确保你已经安装了必要的库:

pip install torch torchvision

注意:具体需要依据cuda版本来选择对应版本

PyTorch

 2. 导入库

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader

 3. 定义 Vision Transformer 模型
 

import math
from torch import nn, einsum
import torch.nn.functional as F

class PatchEmbedding(nn.Module):
    def __init__(self, img_size=224, patch_size=16, in_channels=3, embed_dim=768):
        super().__init__()
      
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

reset2021

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值