∫11−u2dudxdx=sin−1u+C\int \frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x} d x=\sin ^{-1} u+C∫1−u21dxdudx=sin−1u+C
∫−11−u2dudxdx=cos−1u+C\int-\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x} d x=\cos ^{-1} u+C∫−1−u21dxdudx=cos−1u+C
∫11+u2dudxdx=tan−1u+C\int \frac{1}{1+u^{2}} \frac{d u}{d x} d x=\tan ^{-1} u+C∫1+u21dxdudx=tan−1u+C
∫−11+u2dudxdx=cot−1u+C\int-\frac{1}{1+u^{2}} \frac{d u}{d x} d x=\cot ^{-1} u+C∫−1+u21dxdudx=cot−1u+C
∫±1uu2−1dudxdx=sec−1u+C\int \pm \frac{1}{u \sqrt{u^{2}-1}} \frac{d u}{d x} d x=\sec ^{-1} u+C∫±uu2−11dxdudx=sec−1u+C
∫∓1uu2−1dudxdx=csc−1u+C\int \mp \frac{1}{u \sqrt{u^{2}-1}} \frac{d u}{d x} d x=\csc ^{-1} u+C∫∓uu2−11dxdudx=csc−1u+C