the trapezoidal rule for approximating Definite Integrals

本文介绍使用等分区间法近似计算积分的方法,通过实例演示如何将积分区间分为多个子区间,进而估算两个特定积分的值。第一个积分是从0到1/2的1/(1+x^2)dx,使用五个子区间得到近似值0.463;第二个积分是从0到3的sqrt(1+x^3)dx,使用六个子区间得到近似值7.39。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Approximate ∫012dx1+x2\int_{0}^\frac{1}{2} \frac{d x}{1+x^{2}}0211+x2dx by using five subintervals. \quad Ans. 0.463

表达式产出:

leftPoint = 0
rightPoint = 1 / 2
subIntervalNum = 5
subIntervalLen = '{}/{}'.format(rightPoint - leftPoint, subIntervalNum)

expressionStrList = []
for i in range(subIntervalNum + 1):
    expressionStrList.append('1/(1+({leftPoint} + {subIntervalLen} * {i})^2)'.format(leftPoint=leftPoint, subIntervalLen=subIntervalLen, i=i))
joinedExpressionStr = ' + '.join(expressionStrList)
print(joinedExpressionStr)

print('{subIntervalLen}*(1/2*{joinedExpressionStr}*1/2)'.format(subIntervalLen=subIntervalLen, joinedExpressionStr=joinedExpressionStr))

Approximate ∫031+x3dx\int_{0}^{3} \sqrt{1+x^{3}} d x031+x3dx using six subintervals. \quadAns. 7.39.7.39 .7.39.

leftPoint = 0
rightPoint = 3
subIntervalNum = 6
subIntervalLen = '{}/{}'.format(rightPoint - leftPoint, subIntervalNum)

expressionStrList = []
for i in range(subIntervalNum + 1):
    expressionStrList.append('sqrt(1+({leftPoint} + {subIntervalLen} * {i})^3)'.format(leftPoint=leftPoint, subIntervalLen=subIntervalLen, i=i))
joinedExpressionStr = ' + '.join(expressionStrList)
print(joinedExpressionStr)

print('{subIntervalLen}*(1/2*{joinedExpressionStr}*1/2)'.format(subIntervalLen=subIntervalLen, joinedExpressionStr=joinedExpressionStr))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值