谷歌 colab GPU 内存查看与释放
参考链接
http://thoughtsondl.blogspot.com/2018/06/how-to-release-or-reset-gpu-memory-in.html
# colab
https://colab.research.google.com
1. 查看 GPU 内存占用情况
-
首先安装支持包
# memory footprint support libraries/code !ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi !pip install gputil !pip install psutil !pip install humanize -
然后运行下面的代码
import psutil import humanize import os import GPUtil as GPU GPUs = GPU.getGPUs() # XXX: only one GPU on Colab and isn’t guaranteed gpu = GPUs[0] def printm(): process = psutil.Process(os.getpid()) print("Gen RAM Free: " + humanize.naturalsize(psutil.virtual_memory().available), " | Proc size: " + humanize.naturalsize(process.memory_info().rss)) print("GPU RAM Free: {0:.0f}MB | Used: {1:.0f}MB | Util {2:3.0f}% | Total {3:.0f}MB".format(gpu.memoryFree, gpu.memoryUsed, gpu.memoryUtil*100, gpu.memoryTotal)) printm() -
运行结果大致如下所示:
Gen RAM Free: 12.7 GB | Proc size: 117.8 MB GPU RAM Free: 11441MB | Used: 0MB | Util 0% | Total 11441MB
2. 查看具体占用情况
-
命令
!ps -aux|grep python -
结果
root 75 0.2 0.0 0 0 ? Zs 12:18 0:14 [python3] <defunct> root 95 0.0 0.0 0 0 ? Z 12:18 0:01 [python3] <defunct> root 645 0.4 0.0 0 0 ? Zs 12:30 0:22 [python3] <defunct> root 665 0.0 0.0 0 0 ? Z 12:30 0:00 [python3] <defunct> root 878 0.1 0.0 0 0 ? Zs 12:34 0:08 [python3] <defunct> root 898 0.0 0.0 0 0 ? Z 12:34 0:00 [python3] <defunct> root 1157 4.4 0.0 0 0 ? Zs 12:37 3:44 [python3] <defunct> root 1177 0.0 0.0 0 0 ? Z 12:37 0:01 [python3] <defunct> root 1540 5.1 0.0 0 0 ? Zs 12:48 3:42 [python3] <defunct> root 1560 0.0 0.0 0 0 ? Z 12:49 0:00 [python3] <defunct> root 1919 5.9 0.0 0 0 ? Zs 12:57 3:45 [python3] <defunct> root 1939 0.0 0.0 0 0 ? Z 12:57 0:01 [python3] <defunct> root 2360 11.5 0.0 0 0 ? Zs 13:08 6:00 [python3] <defunct> root 2380 0.1 0.1 128920 16772 ? Sl 13:08 0:03 /usr/bin/python3 /usr/local/lib/python3.7/dist-packages/debugpy/adapter --for-server 38435 --host 127.0.0.1 --port 21826 --server-access-token b2414ede3edba389484a9e85b6689d9d30a08c5210fb245f001428483f77d560 root 3025 0.3 0.4 196464 62136 ? Sl 13:32 0:06 /usr/bin/python2 /usr/local/bin/jupyter-notebook --ip="172.28.0.2" --port=9000 --FileContentsManager.root_dir="/" --MappingKernelManager.root_dir="/content" root 3032 93.3 15.7 41776532 2100560 ? Ssl 13:32 26:11 /usr/bin/python3 -m ipykernel_launcher -f /root/.local/share/jupyter/runtime/kernel-2145fd1d-b94a-4a65-b375-8ace07dcd021.json root 3052 0.2 0.1 128924 16224 ? Sl 13:32 0:03 /usr/bin/python3 /usr/local/lib/python3.7/dist-packages/debugpy/adapter --for-server 38657 --host 127.0.0.1 --port 19937 --server-access-token c608ee68a5811a689b01f7454ee5a7fbd7ac78c56dc32a1a96a08ec4c768782d root 3518 0.0 0.0 18380 3092 ? S 14:00 0:00 bash -c tail -n +0 -F "/root/.config/Google/DriveFS/Logs/drive_fs.txt" | python3 /opt/google/drive/drive-filter.py > "/root/.config/Google/DriveFS/Logs/timeouts.txt" root 3520 0.4 0.0 31740 9680 ? S 14:00 0:00 python3 /opt/google/drive/drive-filter.py root 3525 0.0 0.0 39196 6548 ? S 14:00 0:00 /bin/bash -c ps -aux|grep python root 3527 0.0 0.0 38576 5612 ? S 14:00 0:00 grep python
3. 释放内存
-
命令
!kill -9 2380 # 后面的数字是上一个 cell 中运行结果中 root 后面的数字 -
删除所有进程后再次查看 GPU 占用, 结果如下
Gen RAM Free: 12.7 GB | Proc size: 117.6 MB GPU RAM Free: 11441MB | Used: 0MB | Util 0% | Total 11441MB
本文介绍了如何在谷歌Colab中查看及释放GPU内存。通过安装相关支持包,可以检查GPU内存占用情况,并通过特定命令查看详细占用和释放内存,确保高效使用GPU资源。
8072

被折叠的 条评论
为什么被折叠?



