多因子模型之因子(信号)测试平台----因子值的处理(二)

本文探讨了多因子模型中因子值的处理,重点在于中性化策略,包括行业中性和风格中性。介绍了两种中性化方法:行业分类标准化和残差法,其中后者适用于行业中性和风格中性。文中还详细讲解了如何实现行业中性化,通过获取股票行业数据并进行回归处理,得到行业中性化的因子值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

广告:本人的单因子测试视频教程https://edu.youkuaiyun.com/course/detail/25572       

我们知道,一个因子值的处理大致分为三个步骤,去极值、标准化、中性化,上次我们对因子值进行了去极值和标准化,这一次,我们主要讲一讲中性化,也就是neut。

        neut分为行业中性和风格中性两种。行业中性很好理解,我们知道,一个因子在不同的行业间不一定有可比性。譬如资产权益比,也就是杠杆率。显然,有的行业杠杆率很高,比如房地产行业,而有的行业则杠杆率不高,比如传统机械制造行业。再比如PB,有的轻资产行业PB很高,比如软件,而有的行业PB很低,比如煤炭。所以,很多因子数值在一个行业内比较才是有效的。同样的思路,有些因子虽然看起来不是一些基本的风格因子,比如PE,但是,其实我们知道,PE和市值有很大的关系,大市值的公司,一般是成熟的公司,PE往往不高。所以,我们需要把PE中的市值部分去掉。

1.两种中性的方法

        所谓中性,最本质的意义就是“无关”,我们说市场中性,就是说我们这个组合与市场无关;我们说因子做了行业中性,说明我们的因子和行业没有关系,风格中性也是如此。这里的风格一般包括barra中的十个风格因子。

        中性有两种方法,第一种仅仅可以做行业中性。也就是我们对股票进行行业的分类,然后在每个行业内在进行一次标准化。这种中性法可以用于行业中性,而不能用于风格中性。

        第二种方法既可以用于行业中性,也可以用于风格中性,叫做残差法。也就是做一个回归,其中,因子值是y,需要中性的风格因子的暴露为x,然后我们进行回归。回归之后的残差就是因子值对行业中性化后的值。这里的风格因子可以是一个也可以多个,也就是一元回归和多元回归的区别。

2.行业中性化

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钱塘小甲子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值