40亿QQ号,如何去重?

前言

首先我们来看看如果要存储40亿QQ号需要多少内存?我们使用无符号整数存储,一个整数需要4个字节,那么40亿需要4*4000000000/1024/1024/1024≈15G,在业务中我们往往需要更多的空间。而且在Java中并不存在无符号整形,只有几个操作无符号的静态方法。

1GB = 1024MB,1MB = 1024KB,1KB = 1024B, 1B = 8b

很显然这种存储是不太优雅的,对于这种大数据量的去重,我们可以使用位图Bitmap。

Bitmap

Bitmap,位图,首先看它的名字,比特map,首先我们听到map,一般都有去重的功能,bitmap听名字就像使用bit存储的map。确实,位图是使用bit数组表示的,它只存储0或者1,因此我们可以把全部的QQ号放到位图中,当index位置为1时表示已经存在。
在这里插入图片描述

假如我们要判断2924357571是否存在,那么我们只需要看index为2924357571的值是否为1,如果为1则表示已经存在。

位图使用1个比特表示一个数是否存在,那么使用无符号整数表示QQ号,4字节2^32-1是4294967295,内存需要4294967295/8/1024/1024≈512MB。

使用Java编程时,我们使用位图一般是通过的redis,在redis中位图常用的是以下三个命令:

命令功能
SETBIT key offset value设置指定offset位置的值,value只能是0或1
GETBIT key offset获取指定offset位置的值
BITCOUNT key start end获取start到end之间value为1的数量

演示

在这里插入图片描述

其他作用

  1. 大数据量去重,Bitmap其极致的空间用在大数据量去重非常合适的,除了QQ号去重,我们还可以用在比如订单号去重;爬取网站时URL去重,爬过的就不爬取了。
  2. 数据统计,比如在线人员统计,将在线人员id为偏移值,为1表示在线;视频统计,将全部视频的id为偏移存储到Bitmap中。
  3. 布隆过滤器(BloomFilter),布隆过滤器的基础就是使用的位图,只不过布隆过滤器使用了多个哈希函数处理,只有当全部的哈希都为1,才表示这个值存在。

布隆过滤器

布隆过滤器一般会使用多个哈希函数,计算出对应的hash对应多个位图下标值,如果都为1,表示这个值存在。
在这里插入图片描述

例如hutool工具中布隆过滤器的实现类BitMapBloomFilter默认就提供了5个哈希函数。

public BitMapBloomFilter(int m) {
    int mNum =NumberUtil.div(String.valueOf(m), String.valueOf(5)).intValue();
    long size = mNum * 1024 * 1024 * 8;
    
    filters = new BloomFilter[]{
       new DefaultFilter(size),
       new ELFFilter(size),
       new JSFilter(size),
       new PJWFilter(size),
       new SDBMFilter(size)
    };
}

优点:相较位图,布隆过滤器使用多个hash算法,我们就可以给字符串或对象存进去计算hash了,不像位图一样只能使用整形数字看偏移位置是否为1。

缺点:可能产生哈希冲突,如果判断某个位置值为1,那么可能是产生了哈希冲突,所以,布隆过滤器会有一定误差。

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值