2021SC@SDUSC
接我的上一篇博客:PaddleDetection代码解析之Transformer encoder源码实现分析(上)。
依旧是对代码的解释在下面代码的注释中:
MultiHeadAttentionLayer
几个维度:
self._emb_size = config['hidden_size'] # 768
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4
得到q、k、v的矩阵:
q = self._q_fc(queries) k = self._k_fc(keys) v = self._v_fc(values)
class MultiHeadAttentionLayer(Layer):
"""
MultiHeadAttentionLayer
"""
def __init__(self,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
gather_idx=None,
static_kv=False,
param_initializer=None,
name=""):
super(MultiHeadAttentionLayer, self).__init__()
self._n_head = n_head
self._d_key = d_key
self._d_value = d_value
self._d_model = d_model
self._dropout_rate = dropout_rate
self._q_fc = Linear(
input_dim=d_model,
output_dim=d_key * n_head,
param_attr=fluid.ParamAttr(
name=name + '_query_fc.w_0', initializer=param_initializer),
bias_attr=name + '_query_fc.b_0')
self._k_fc = Linear(
input_dim=d_model,
output_dim=d_key * n_head,
param_attr=fluid.ParamAttr(
name=name + '_key_fc.w_0', initializer=param_initializer),
bias_attr=name + '_key_fc.b_0')
self._v_fc = Linear(
input_dim=d_model,
output_dim=d_value * n_head,
param_attr=fluid.ParamAttr(
name=name + '_value_fc.w_0', initializer=param_initializer),
bias_attr=name + '_value_fc.b_0')
self._proj_fc = Linear(
input_dim=d_value * n_head,
output_dim=d_model,
param_attr=fluid.ParamAttr(
name=name + '_output_fc.w_0', initializer=param_initializer),
bias_attr=name + '_output_fc.b_0')
def forward(self, queries, keys, values, attn_bias):
"""
forward
:param queries:
:param keys:
:param values:
:param attn_bias:
:return:
"""
# compute q ,k ,v
keys = queries if keys is None else keys
values = keys if values is None else values
# 得到q k v 矩阵
q = self._q_fc(queries)
k = self._k_fc(keys)
v = self._v_fc(values)
# split head
q_hidden_size = q.shape[-1]
eshaped_q = fluid.layers.reshape(
x=q,
shape=[0, 0, self._n_head, q_hidden_size // self._n_head],
inplace=False)
transpose_q = fluid.layers.transpose(x=reshaped_q, perm=[0, 2, 1, 3])
k_hidden_size = k.shape[-1]
reshaped_k = fluid.layers.reshape(
x=k,
shape=[0, 0, self._n_head, k_hidden_size // self._n_head],
inplace=False)
transpose_k = fluid.layers.transpose(x=reshaped_k, perm=[0, 2, 1, 3])
v_hidden_size = v.shape[-1]
reshaped_v = fluid.layers.reshape(
x=v,
shape=[0, 0, self._n_head, v_hidden_size // self._n_head],
inplace=False)
transpose_v = fluid.layers.transpose(x=reshaped_v, perm=[0, 2, 1, 3])
scaled_q = fluid.layers.scale(x=transpose_q, scale=self._d_key**-0.5)
# scale dot product attention
product = fluid.layers.matmul(
#x=transpose_q,
x=scaled_q,
y=transpose_k,
transpose_y=True)
#alpha=self._d_model**-0.5)
if attn_bias:
product += attn_bias
weights = fluid.layers.softmax(product)
if self._dropout_rate:
weights_droped = fluid.layers.dropout(
weights,
dropout_prob=self._dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = fluid.layers.matmul(weights_droped, transpose_v)
else:
out = fluid.layers.matmul(weights, transpose_v)
# combine heads
if len(out.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = fluid.layers.transpose(out, perm=[0, 2, 1, 3])
final_out = fluid.layers.reshape(
x=trans_x,
shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]],
inplace=False)
# fc to output
proj_out = self._proj_fc(final_out)
return proj_out
EncoderSubLayer
预处理:
self._preprocess_layer = PrePostProcessLayer( self._preprocess_cmd, d_model, prepostprocess_dropout, name=name + "_pre_att")
多头注意力:
self._multihead_attention_layer = MultiHeadAttentionLayer( d_key, d_value, d_model, n_head, attention_dropout, None, None, False, param_initializer, name=name + "_multi_head_att")
class EncoderSubLayer(Layer):
"""
EncoderSubLayer
"""
def __init__(self,
hidden_act,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=""):
super(EncoderSubLayer, self).__init__()
self.name = name
self._preprocess_cmd = preprocess_cmd
self._postprocess_cmd = postprocess_cmd
self._prepostprocess_dropout = prepostprocess_dropout
# 预处理
self._preprocess_layer = PrePostProcessLayer(
self._preprocess_cmd,
d_model,
prepostprocess_dropout,
name=name + "_pre_att")
# 多头注意力
self._multihead_attention_layer = MultiHeadAttentionLayer(
d_key,
d_value,
d_model,
n_head,
attention_dropout,
None,
None,
False,
param_initializer,
name=name + "_multi_head_att")
self._postprocess_layer = PrePostProcessLayer(
self._postprocess_cmd,
d_model,
self._prepostprocess_dropout,
name=name + "_post_att")
self._preprocess_layer2 = PrePostProcessLayer(
self._preprocess_cmd,
d_model,
self._prepostprocess_dropout,
name=name + "_pre_ffn")
self._positionwise_feed_forward = PositionwiseFeedForwardLayer(
hidden_act,
d_inner_hid,
d_model,
relu_dropout,
param_initializer,
name=name + "_ffn")
self._postprocess_layer2 = PrePostProcessLayer(
self._postprocess_cmd,
d_model,
self._prepostprocess_dropout,
name=name + "_post_ffn")
def forward(self, enc_input, attn_bias):
"""
forward
:param enc_input: encoder 输入
:param attn_bias: attention 偏置
:return: 一层encoder encode输入之后的结果
"""
# 在进行多头attention前,先进行预处理
pre_process_multihead = self._preprocess_layer(enc_input)
# 预处理之后的结果给到多头attention层
attn_output = self._multihead_attention_layer(pre_process_multihead,
None, None, attn_bias)
# 经过attention之后进行后处理
attn_output = self._postprocess_layer(attn_output, enc_input)
# 在给到FFN层前进行预处理
pre_process2_output = self._preprocess_layer2(attn_output)
# 得到FFN层的结果
ffd_output = self._positionwise_feed_forward(pre_process2_output)
# 返回后处理后的结果
return self._postprocess_layer2(ffd_output, attn_output)
EncoderLayer
# 使用add_sublayer方法添加子层:
self.add_sublayer( 'esl_%d' % i, EncoderSubLayer( hidden_act, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, param_initializer, name=name + '_layer_' + str(i))))
class EncoderLayer(Layer):
"""
encoder
"""
def __init__(self,
hidden_act,
n_layer, # encoder子层数量 / encoder深度
n_head, # 注意力机制中head数量
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout, # 处理层的dropout概率
attention_dropout, # attention层的dropout概率
relu_dropout, # 激活函数层的dropout概率
preprocess_cmd="n", # 前处理,正则化
postprocess_cmd="da", # 后处理,dropout + 残差连接
param_initializer=None,
name=""):
super(EncoderLayer, self).__init__()
self._preprocess_cmd = preprocess_cmd
self._encoder_sublayers = list()
self._prepostprocess_dropout = prepostprocess_dropout
self._n_layer = n_layer
self._hidden_act = hidden_act
# 后处理层,这里是层正则化
self._preprocess_layer = PrePostProcessLayer(
self._preprocess_cmd, 3, self._prepostprocess_dropout,
"post_encoder")
# 根据n_layer的设置(bert_base中是12)迭代定义几个encoder子层
for i in range(n_layer):
self._encoder_sublayers.append(
# 使用add_sublayer方法添加子层
self.add_sublayer(
'esl_%d' % i,
EncoderSubLayer(
hidden_act,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
param_initializer,
name=name + '_layer_' + str(i))))
def forward(self, enc_input, attn_bias):
"""
forward
:param enc_input: 模型输入
:param attn_bias: bias项可根据具体情况选择是否保留
:return: encode之后的结果
"""
# 迭代多个encoder子层,例如 bert base 的encoder子层数为12(self._n_layer)
for i in range(self._n_layer):
# 得到子层的输出,参数为 enc_input, attn_bias
enc_output = self._encoder_sublayers[i](enc_input, attn_bias)
# 该子层的输出作为下一子层的输入
enc_input = enc_output
# 返回处理过的层
return self._preprocess_layer(enc_output)