超声成像作为一种替代的低成本、易于获取的非电离成像方式已显示出巨大的前景,可用于乳腺癌筛查。特别是,随着最近便携式设备的出现,超声检查预计将在中低收入国家中越来越普及。然而,超声成像在乳腺癌诊断中的可靠性高度依赖于操作超声医师和检查放射科医生的经验。
为了解决这一限制,人们开发了计算机辅助诊断(CAD)工具来标准化超声测试。深度学习技术的进步使得肿瘤检测、分割和分类等任务实现自动化。卷积神经网络(CNN)在区分良性和恶性乳腺病变方面,通过结合从超声图像中提取的放射组学特征进一步提高此类模型的性能。
深度学习方法面临数据缺失、数据分布不平衡、解空间巨大等挑战,加剧了学习过程的不确定性,从而影响了这些学习算法的性能。为了缓解这些问题,至关重要的是以忽略不可靠预测或将其传递给放射科专家的方式来呈现 CAD 模型的不确定性估计 。
本研究的重要目的是:设计一个指标量化乳腺病变分类结果的不确定性;采用所提出的不确定性度量来改进模型的性能特征。
数据集
总共包含 1150 张图像,其中 469 个病变的横向和纵向视图。病变边界注释是参考超声检查专家放置的卡尺进行的。 BIRADS评分由放射科专家进行评分,据此将病变分为良性(N=839,BIRADS=1&2)或恶性(N=311,BIRADS 3+,活检阳性)。