链接:https://leetcode-cn.com/problems/count-of-range-sum/
第一种:暴力循环 O(N ^ 3)
public static int test(int[] nums, int lower, int upper) {
// 纯暴力
int len = nums.length;
int count = 0;
for (int i = 0; i < len; i++) {
// 计算数组和, 以i为边界
for (int j = 0; j <= i; j++) {
// 确定右边界 R
int sum = 0;
for (int z = j; z <= i; z++) {
sum += nums[z];
}
if (sum >= lower && sum <= upper) count ++;
}
}
return count;
}
第二种:前缀和优化 O(N^2)
public static int test2(int[] nums, int lower, int upper) {
// 构造前缀和
int len = nums.length;
int[] sums = new int[len];
sums[0] = nums[0];
for (int i = 1; i < len; i++) sums[i] = sums[i - 1] + nums[i];
int count = 0;
for (int i = 0; i < len; i++) {
for (int j = 0; j <= i; j++) {
int num = -1;
if (j - 1 < 0) {
num = sums[i];
}
else {
num = sums[i] - sums[j - 1];
}
if (num >= lower && num <= upper) count ++;
}
}
return count;
}
前两种只测试了样例,时间上一定通过不了,在10^5数据下,至少需要O(NlogN)
第三种:前缀和 + 归并排序 O(N * logN)
/**
*
* @param nums 给定数组nums
* @param lower 判断是否存在一个子数组在[lower, upper]
* @param upper
* @return
*/
public int countRangeSum(int[] nums, int lower, int upper) {
if (nums == null || nums.length < 2) {
if (nums != null) {
if (nums[0] >= lower && nums[0] <= upper) return 1;
}
return 0;
}
// 计算前缀和
long[] pres = new long[nums.length];
pres[0] = nums[0];
for (int i = 1; i < nums.length; i++) pres[i] = pres[i - 1] + nums[i];
// 传递前缀数组
return mergeSort(pres, 0, nums.length - 1, lower, upper);
}
private int mergeSort(long[] nums, int l, int r, int lower, int upper) {
// 在进行merge的时候,假设当前i, 不会包含[0, i]的情况,所以需要进行特判
if (l == r) {
if (nums[l] >= lower && nums[l] <= upper) return 1;
return 0;
}
int mid = l + ((r - l) >> 1);
return mergeSort(nums, l, mid, lower, upper) + mergeSort(nums, mid + 1, r, lower, upper)
+ merge(nums, l, mid, r, lower, upper);
}
private int merge(long[] nums, int l, int mid, int r, int lower, int upper) {
// [windowsL, windowsR)
int windowsL = l;
int windowsR = l;
int count = 0;
for (int i = mid + 1; i <= r; i ++) {
long newLower = nums[i] - upper;
long newUpper = nums[i] - lower;
while (windowsL <= mid && nums[windowsL] < newLower) windowsL++;
while (windowsR <= mid && nums[windowsR] <= newUpper) windowsR++;
count += windowsR - windowsL;
}
// 正常merge
long[] help = new long[r - l + 1];
int i = 0;
int l1 = l, l2 = mid + 1;
while (l1 <= mid && l2 <= r) {
help[i++] = nums[l1] < nums[l2] ? nums[l1 ++] : nums[l2 ++];
}
while (l1 <= mid) {
help[i ++] = nums[l1 ++];
}
while (l2 <= r) {
help[i ++] = nums[l2 ++];
}
for (int j = 0; j < help.length; j++) {
nums[l + j] = help[j];
}
return count;
}
总结
归并解法:当出现某一位置i,去求解左侧或右侧满足题意情况下可行解个数
类似的问题:归并排序求小和(左侧),归并求解右侧nums[j] * 2 < nums[i]的个数。