端到端语音识别(二) ctc

这篇博客介绍了CTC(Connectionist Temporal Classification)在语音识别中的应用,包括CTC的简介、训练和公式推导、解码以及使用WFST的解码方法。历史部分追溯了CTC从2006年提出至今在语音识别领域的进展,包括Google、Baidu等公司的贡献。参考文献列出了相关研究论文,为深入理解提供了资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由于代码比较复杂,且需要大量的数据和计算资源,这里无法提供完整的LSTM CTC语音识别代码。但是,以下是一个基本的LSTM CTC语音识别模型的代码框架,可以帮助理解LSTM CTC语音识别的基本原理。 ```python import tensorflow as tf class CTCModel(tf.keras.Model): def __init__(self, num_classes): super(CTCModel, self).__init__() self.num_classes = num_classes # Define the layers of the model self.conv1 = tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same') self.pool1 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same') self.conv2 = tf.keras.layers.Conv2D(filters=128, kernel_size=(3, 3), activation='relu', padding='same') self.pool2 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same') self.conv3 = tf.keras.layers.Conv2D(filters=256, kernel_size=(3, 3), activation='relu', padding='same') self.pool3 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same') self.conv4 = tf.keras.layers.Conv2D(filters=512, kernel_size=(3, 3), activation='relu', padding='same') self.pool4 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same') self.conv5 = tf.keras.layers.Conv2D(filters=512, kernel_size=(3, 3), activation='relu', padding='same') self.pool5 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same') self.flatten = tf.keras.layers.Flatten() self.dense1 = tf.keras.layers.Dense(units=256, activation='relu') self.dropout1 = tf.keras.layers.Dropout(rate=0.5) self.dense2 = tf.keras.layers.Dense(units=128, activation='relu') self.dropout2 = tf.keras.layers.Dropout(rate=0.5) self.dense3 = tf.keras.layers.Dense(units=self.num_classes+1, activation=None) def call(self, inputs): # Define the forward pass of the model x = self.conv1(inputs) x = self.pool1(x) x = self.conv2(x) x = self.pool2(x) x = self.conv3(x) x = self.pool3(x) x = self.conv4(x) x = self.pool4(x) x = self.conv5(x) x = self.pool5(x) x = self.flatten(x) x = self.dense1(x) x = self.dropout1(x) x = self.dense2(x) x = self.dropout2(x) x = self.dense3(x) return x def ctc_loss(y_true, y_pred): # Define the CTC loss function batch_size = tf.shape(y_true)[0] input_length = tf.shape(y_pred)[1] label_length = tf.shape(y_true)[1] input_length = input_length * tf.ones(shape=(batch_size, 1), dtype=tf.int32) label_length = label_length * tf.ones(shape=(batch_size, 1), dtype=tf.int32) loss = tf.keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length) return loss # Define the input shape and number of classes input_shape = (None, 20, 80, 1) num_classes = 28 # Define the model and compile it with the CTC loss function model = CTCModel(num_classes) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) model.compile(optimizer=optimizer, loss=ctc_loss) # Load the data and train the model # ... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值