基本积分公式表
- ∫kdx=kx+C  (k为常数)\int k dx = kx + C\;(k为常数)∫kdx=kx+C(k为常数)
- ∫sinxdx=−cosx+C\int \sin x dx = -\cos x + C∫sinxdx=−cosx+C
- ∫cosxdx=sinx+C\int \cos x dx = \sin x + C∫cosxdx=sinx+C
- ∫xμdx=1μ+1xμ+1+C  (μ̸=−1)\int x^ \mu dx = \frac1{\mu + 1} x^{ \mu + 1} + C \; (\mu \not= -1)∫xμdx=μ+11xμ+1+C(μ̸=−1)
- ∫1cos2xdx=∫sec2xdx=tanx+C\int \frac 1{ \cos^ 2x} dx = \int \sec^2 x dx = \tan x + C∫cos2x1dx=∫sec2xdx=tanx+C
- ∫1sin2xdx=∫csc2xdx=−cotx+C\int \frac1{\sin^2x}dx = \int\csc^2xdx = - \cot x + C∫sin2x1dx=∫csc2xdx=−cotx+C
- ∫secxtanxdx=secx+C\int \sec x \tan xdx = \sec x + C∫secxtanxdx=secx+C
- ∫cscxcotxdx=−cscx+C\int \csc x \cot xdx = - \csc x + C∫cscxcotxdx=−cscx+C
- ∫axdx=1lnaax+C  (a>0,a̸=1)\int a^x dx = \frac 1{ \ln a} a^x + C \; ( a>0, a \not = 1)∫axdx=lna1ax+C(a>0,a̸=1)
- ∫exdx=ex+C\int e^x dx = e^x + C∫exdx=ex+C
- ∫1xdx=ln∣x∣+C\int \frac 1x dx = \ln|x| + C∫x1dx=ln∣x∣+C
- ∫11−x2=arcsinx+C=−arccosx+C\int \frac1{ \sqrt{ 1-x^ 2} } = \arcsin x + C = - \arccos x + C∫1−x21=arcsinx+C=−arccosx+C
- ∫11+x2=arctan  x+C=−arccot  x+C\int \frac1{1+x^2} = arctan \; x + C = - arccot \; x + C∫1+x21=arctanx+C=−arccotx+C
- ∫shxdx=chx+C\int \sh xdx = \ch x + C∫shxdx=chx+C
- ∫chxdx=shx+C\int \ch xdx = \sh x + C∫chxdx=shx+C
- ∫tanxdx=−ln∣cosx∣+C\int \tan xdx = - \ln | \cos x | + C∫tanxdx=−ln∣cosx∣+C
- ∫cotxdx=ln∣sinx∣+C\int \cot xdx = \ln | \sin x | + C∫cotxdx=ln∣sinx∣+C
- ∫secxdx=ln∣secx+tanx∣+C\int \sec xdx = \ln | \sec x + \tan x | + C∫secxdx=ln∣secx+tanx∣+C
- ∫cscxdx=ln∣cscx−cotx∣+C\int \csc xdx = \ln | \csc x - \cot x | + C∫cscxdx=ln∣cscx−cotx∣+C
- ∫1a2+x2dx=1aarctanxa+C\int \frac 1{ a^2 + x^2} dx = {\frac 1a} \arctan { \frac xa } + C∫a2+x21dx=a1arctanax+C
- ∫1x2−a2dx=12aln∣x−ax+a∣+C\int \frac 1{ x^2 - a^2} dx = \frac 1{2a} \ln \left| \frac {x - a }{x + a} \right | + C∫x2−a21dx=2a1ln∣∣∣∣x+ax−a∣∣∣∣+C
- ∫1a2−x2dx=12aln∣x+ax−a∣+C\int \frac 1{a^2 - x^2} dx = \frac 1{2a} \ln \left | \frac {x + a }{x - a } \right | + C∫a2−x21dx=2a1ln∣∣∣∣x−ax+a∣∣∣∣+C
- ∫1a2−x2dx=arcsinxa+C\int \frac 1{ \sqrt {a^2 - x^2 } } dx = \arcsin \frac xa + C∫a2−x21dx=arcsinax+C
- ∫1a2±x2dx=ln∣x+x2±a2∣+C\int \frac 1{ \sqrt {a^2 \pm x^2}} dx = \ln \left | x + \sqrt { x^2 \pm a^2 } \right | + C∫a2±x21dx=ln∣∣∣x+x2±a2∣∣∣+C