常用求极限的方法
1. 两个重要的极限
(1).limx→0sinxx=1\lim\limits_ { x \rightarrow 0} \frac {\sin x }x = 1x→0limxsinx=1
(2).limx→∞(1+1x)x=limx→0(1+x)1n=e\lim\limits_ { x \rightarrow \infty } {( 1+ \frac 1x )} ^x = \lim\limits_ {x \rightarrow 0 } {( 1 + x )}^{\frac 1n} = ex→∞lim(1+x1)x=x→0lim(1+x)n1=e
例子:求极限limx→∞(x+1x−1)x\displaystyle\lim\limits_{ x \rightarrow \infty }{ \left ( \frac {x+1} {x-1} \right ) }^xx→∞lim(x−1x+1)x
解:limx→∞(x+1x−1)x=limx→∞(1+2x−1)x=limx→∞[(1+1x−12)x−12(1+2x−1)12]2=e2\lim\limits_{ x \rightarrow \infty }{\displaystyle \left ( \frac {x+1} {x-1} \right ) }^x \\ = \lim\limits_{x \rightarrow \infty } {\displaystyle \left ( 1 + \frac 2 {x-1} \right )^x }\\ = \lim\limits_ {x \rightarrow \infty } { \left [ \left ( 1 + \displaystyle\frac 1{\displaystyle\frac {x-1} 2 } \left ) ^ {\displaystyle\frac {x-1} 2} \right (1 + \frac 2 {x-1} \right ) ^{\displaystyle\frac 12} \right ]^2 }\\ = \displaystyle e^2x→∞lim(x−1x+1)x=x→∞lim(1+x−12)x=x→∞lim⎣⎢⎢⎢⎢⎡⎝⎜⎛1+2x−11⎠⎞2x−1⎝⎛1+x−12⎠⎟⎞21⎦⎥⎥⎥⎥⎤2=e2
2. 等价无穷小
当 x→0x \rightarrow 0x→0 时,
sinx\sin xsinx ~ x
tanx\tan xtanx ~ xln(x+1)x \ln (x + 1)xln(x+1)
axa^xax - 1 ~ xlnax \ln axlna
(1+bx)a−1( 1+ bx )^ a - 1(1+bx)a−1 ~ abxabxabx
x−sinxx - \sin xx−sinx ~ x36\displaystyle\frac {x^3 }66x3
tanx−x\tan x - xtanx−x ~ x33\displaystyle\frac {x^3 }33x3
tanx−sinx\tan x - \sin xtanx−sinx ~ x32\displaystyle\frac {x ^3}22x3
注意:等价无穷小一般只在乘除中使用
(隐藏boss):加减中可以整体替换,但不能单独替换。
前提条件:limα′β′̸=−1\displaystyle\lim \frac{\alpha '}{\beta '} \not= -1limβ′α′̸=−1 \quad 则 α+β\alpha + \betaα+β ~ α′+β′\alpha '+ \beta 'α′+β′
即替换后的结果没有抵消
例子:求 limx→0tanx+sinx3x\displaystyle\lim\limits_ {x \rightarrow 0} \frac {\tan x + \sin x} {3x}x→0lim3xtanx+sinx
解: limx→0tanx+sinx3x=limx→0x+x3x=23\displaystyle\lim\limits_ {x \rightarrow 0} \frac {\tan x + \sin x} {3x}\\
= \lim\limits_ {x \rightarrow 0 } \frac { x + x} {3x}\\
= \frac 23x→0lim3xtanx+sinx=x→0lim3xx+x=32
这里把 tanx+sinx\tan x + \sin xtanx+sinx替换成 x+xx + xx+x后,得到 2x2x2x,此时结果没有抵消,可以使用。
例子:求 limx→0tanx−sinx3x\displaystyle\lim\limits_ {x \rightarrow 0} \frac {\tan x - \sin x} {3x}x→0lim3xtanx−sinx
解:limx→0tanx−sinx3x=limx→0x323x=0\displaystyle\lim\limits_ {x \rightarrow 0} \frac {\tan x - \sin x} {3x}\\
= \displaystyle\lim\limits_ {x \rightarrow 0} \frac {\displaystyle\frac {x^3} 2} {3x}\\
= 0x→0lim3xtanx−sinx=x→0lim3x2x3=0
如果这里把 tanx−sinx\tan x - \sin xtanx−sinx替换成 x−xx - xx−x后,式子抵消,得到 0 的结果,所以不能替换。
3.利用夹逼性定理求极限
例子:求 (1+nn2(\displaystyle\frac {1+n}{n^2}(n21+n) 的极限
1n<1+nn2≤2nn2=2n\frac 1n < \frac {1+n} {n^2} \leq \frac {2n} {n^2} = \frac2nn1<n21+n≤n22n=n2
而1n→0,2n→0,由夹逼准则得而\frac 1n \rightarrow 0, \frac 2n \rightarrow 0,由夹逼准则得而n1→0,n2→0,由夹逼准则得
limn→n21+nn2=0\lim\limits_ {n \rightarrow n^2} \frac{1+n } {n^2}= 0n→n2limn21+n=0