题意:
给定一棵树,有N(N≤100000)N(N≤100000)N(N≤100000)个节点,每一个节点都有一个权值xi(∣xi∣≤10000)x_i (|x_i| \le 10000)xi(∣xi∣≤10000)
你需要执行Q(Q≤100000))Q (Q \le 100000))Q(Q≤100000))次操作:
111 aaa bbb 查询(a,b)(a,b)(a,b)这条链上的最大子段和,可以为空(即输出000)
222 aaa bbb ccc 将(a,b)(a,b)(a,b)这条链上的所有点权变为ccc (∣c∣≤10000)(|c| \le 10000)(∣c∣≤10000)
分析:
相较于SPOJ1716SPOJ1716SPOJ1716,变化就是从普通区间变到了树上,然后是区间修改(其实没差)。多用了一个树链剖分。
树链剖分部分和普通的也有一些区别,就是要分别记录左右两条链的信息,最后再合并才能得到最终答案,假设xxx是左链,yyy是右链就可。最后合并的时候还要注意一点:两个链的方向是相反的,也就是说这两个链的左右连续区间是方向是相反的,要交换其中一个的顺序再合并得出最终答案。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> pii;
const int maxn = 4e5 + 5;
const int maxm = 100 + 5;
const int inf = 0x3f3f3f3f;
const LL mod = 1e9 + 7;//19260817
const double pi = acos(-1.0);
int n, q, x, y, z, cnt, tot, opt, head[maxn], w[maxn];
int id[maxn], pre[maxn], son[maxn], size[maxn], deep[maxn], top[maxn], nw[maxn];
struct node{
int to, next;
}edge[maxn << 1];
struct qwq{
int w, lw, rw, maxw, lazy;
qwq(){
w = lw = rw = maxw = 0;
lazy = inf;
}
}a[maxn << 2];
qwq pushup(qwq x, qwq y){
qwq res;
res.w = x.w + y.w;
res.lw = max(x.lw, x.w + y.lw);
res.rw = max(y.rw, y.w + x.rw);
res.maxw = max(max(x.maxw, y.maxw), x.rw + y.lw);
return res;
}
void pushdown(int k, int l, int r, int mid){
if(a[k].lazy != inf){
a[k << 1].lazy = a[k << 1 | 1].lazy = a[k].lazy;
a[k << 1].w = a[k].lazy * (mid - l + 1);
a[k << 1].lw = a[k << 1].rw = a[k << 1].maxw = max(a[k << 1].w, 0);
a[k << 1 | 1].w = a[k].lazy * (r - mid);
a[k << 1 | 1].lw = a[k << 1 | 1].rw = a[k << 1 | 1].maxw = max(a[k << 1 | 1].w, 0);
a[k].lazy = inf;
}
}
void build(int k, int l, int r){
if(l == r){
a[k].lazy = inf;
a[k].w = nw[l];
a[k].lw = a[k].rw = a[k].maxw = max(nw[l], 0);
return ;
}
int mid = l + r >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
a[k] = pushup(a[k << 1], a[k << 1 | 1]);
}
qwq query(int k, int l, int r, int x, int y){
if(l >= x && r <= y){
return a[k];
}
int mid = l + r >> 1;
pushdown(k, l, r, mid);
qwq p, q;
if(x <= mid) p = query(k << 1, l, mid, x, y);
if(y > mid) q = query(k << 1 | 1, mid + 1, r, x, y);
return pushup(p, q);
}
void update(int k, int l, int r, int x, int y, int z){
if(l >= x && r <= y){
a[k].lazy = z;
a[k].w = (r - l + 1) * z;
a[k].lw = a[k].rw = a[k].maxw = max(a[k].w, 0);
return ;
}
int mid = l + r >> 1;
pushdown(k, l, r, mid);
if(x <= mid) update(k << 1, l, mid, x, y, z);
if(y > mid) update(k << 1 | 1, mid + 1, r, x, y, z);
a[k] = pushup(a[k << 1], a[k << 1 | 1]);
}
void addedge(int u, int v){
edge[++cnt].to = v;
edge[cnt].next = head[u];
head[u] = cnt;
}
void dfs1(int x, int f, int d){
pre[x] = f;
deep[x] = d;
size[x] = 1;
int MAX = -1;
for(int i = head[x]; i; i = edge[i].next){
int v = edge[i].to;
if(v == f) continue;
dfs1(v, x, d + 1);
size[x] += size[v];
if(size[v] > MAX) MAX = size[v], son[x] = v;
}
}
void dfs2(int x, int topf){
id[x] = ++tot;
nw[tot] = w[x];
top[x] = topf;
if(!son[x]) return ;
dfs2(son[x], topf);
for(int i = head[x]; i; i = edge[i].next){
int v = edge[i].to;
if(v == pre[x] || v == son[x]) continue;
dfs2(v, v);
}
}
qwq querySum(int x, int y){
qwq L, R;
while(top[x] != top[y]){
if(deep[top[x]] < deep[top[y]]){
R = pushup(query(1, 1, n, id[top[y]], id[y]), R);
y = pre[top[y]];
}else{
L = pushup(query(1, 1, n, id[top[x]], id[x]), L);
x = pre[top[x]];
}
}
if(deep[x] > deep[y]){
L = pushup(query(1, 1, n, id[y], id[x]), L);
}else{
R = pushup(query(1, 1, n, id[x], id[y]), R);
}
swap(L.lw, L.rw);
return pushup(L, R);
}
void updateSum(int x, int y, int z){
while(top[x] != top[y]){
if(deep[top[x]] < deep[top[y]]) swap(x, y);
update(1, 1, n, id[top[x]], id[x], z);
x = pre[top[x]];
}
if(deep[x] > deep[y]) swap(x, y);
update(1, 1, n, id[x], id[y], z);
}
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; i++) scanf("%d", w + i);
for(int i = 1; i <= n - 1; i++){
scanf("%d %d", &x, &y);
addedge(x, y), addedge(y, x);
}
dfs1(1, -1, 1);
dfs2(1, 1);
build(1, 1, n);
scanf("%d", &q);
while(q--){
scanf("%d", &opt);
if(opt == 1){
scanf("%d %d", &x, &y);
printf("%d\n", max(querySum(x, y).maxw, 0));
}else if(opt == 2){
scanf("%d %d %d", &x, &y, &z);
updateSum(x, y, z);
}
}
return 0;
}
代码巨丑