题意:
nnn个数,qqq次操作
操作000 xxx yyy把AxA_xAx修改为yyy
操作111 lll rrr询问区间[l,r][l, r][l,r]的最大子段和
分析:
一个区间[l,r][l,r][l,r]的最大字段和只有444种情况:
I.I.I.从包含左端点lll开始向右的区间(可能右端点到rrr)
II.II.II.从包含右端点rrr开始向左的区间(可能左端点到lll)
III.III.III.区间的左端点大于lll右端点小于rrr
IV.IV.IV.整个区间
我们用线段树维护四个标记:
1.1.1.区间的左连续最大字段和
2.2.2.区间的右连续最大字段和
3.3.3.区间的最大字段和
4.4.4.区间的和
那么一个区间的最大字段就可以转移了。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> pii;
const int maxn = 5e4 + 5;
const int maxm = 100 + 5;
const int inf = 0x3f3f3f3f;
const LL mod = 1e9 + 7;//19260817
const double pi = acos(-1.0);
int n, q, x, y, opt;
struct node{
int w, lw, rw, maxw;
node(){
w = 0;
lw = rw = maxw = -inf;
}
node operator+ (node b) const{
node c;
c.w = w + b.w;
c.lw = max(lw, w + b.lw);
c.rw = max(b.rw, b.w + rw);
c.maxw = max(max(maxw, b.maxw), rw + b.lw);
return c;
}
}a[maxn << 2];
void build(int k, int l, int r){
if(l == r){
scanf("%d", &x);
a[k].w = a[k].lw = a[k].rw = a[k].maxw = x;
return ;
}
int mid = l + r >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
a[k] = a[k << 1] + a[k << 1 | 1];
}
void update(int k, int l, int r, int x, int y){
if(l == x && r == x){
a[k].w = a[k].lw = a[k].rw = a[k].maxw = y;
return ;
}
int mid = l + r >> 1;
if(x <= mid) update(k << 1, l, mid, x, y);
if(x > mid) update(k << 1 | 1, mid + 1, r, x, y);
a[k] = a[k << 1] + a[k << 1 | 1];
}
node query(int k, int l, int r, int x, int y){
if(l >= x && r <= y){
return a[k];
}
int mid = l + r >> 1;
node b, c;
if(x <= mid) b = query(k << 1, l, mid, x, y);
if(y > mid) c = query(k << 1 | 1, mid + 1, r, x, y);
return b + c;
}
int main(){
scanf("%d", &n);
build(1, 1, n);
scanf("%d", &q);
while(q--){
scanf("%d %d %d", &opt, &x, &y);
if(opt == 0){
update(1, 1, n, x, y);
}else{
printf("%d\n", query(1, 1, n, x, y).maxw);
}
}
return 0;
}