一、本文介绍
本文记录的是利用小波卷积WTConv模块优化RT-DETR的目标检测网络模型。WTConv的目的是在不出现过参数化的情况下有效地增加卷积的感受野,从而解决了CNN在感受野扩展中的参数膨胀问题。本文将其加入到深度可分离卷积中,有效降低模型参数量和计算量,并二次创新,使模块更好地捕捉低频特征,增强网络性能。
专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
文章目录
二、小波卷积WTConv介绍
Wavelet Convolutions for Large Receptive Fields
2.1 出发点
- 解决卷积核增大的问题:在卷积神经网络(CNNs)中,为了模仿视觉Transformer(ViTs)自注意力块的全局感受野,尝试增加卷积核大小,但这种方法在达到全局感受野之前就遇到了上限并饱和,且会导致过参数化。
- 利用信号处理工具:思考能否利用信号处理工具在不出现过参数化的情况下有效地增加卷积的感受野,从而提出利用小波变换(Wavelet Transform,WT)来解决该问题。

2.2 原理
2.2.1 基于小波变换的卷积操作
- 小波变换的卷积表示:采用
Haar小波变换(Haar WT),它在一个空间维度(宽度或高度)上的一级变换可通过特定的深度卷积核和下采样操作实现。例如,在2D情况下,使用一组特定的四个滤波器进行深度卷积操作,这些滤波器包括一个低通滤波器
订阅专栏 解锁全文
3124

被折叠的 条评论
为什么被折叠?



