YOLOv11改进策略【YOLO和Mamba】| 替换骨干 Mamba-YOLOv11-T !!! 最新的发文热点

Mamba-YOLO目标检测模型优化与配置

一、本文介绍

本文记录的是利用Mamba-YOLO优化YOLOv11的目标检测网络模型Mamba-YOLO模型是一种基于状态空间模型(SSM)的目标检测模型,旨在解决传统目标检测模型在处理复杂场景和长距离依赖关系时的局限性,是目前最新的发文热点。本文分成三个章节分别介绍Mamba-YOLO模型结构中各个模块的设计结构和优势,本章讲解Simple Stem模块,并在文末配置Mamba-YOLOv11-T网络结构。


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

Mamba YOLO:SSMs-Based YOLO For Object Detection

在这里插入图片描述


二、Simple Stem 模块介绍

Simple Stem模块是Mamba - YOLO模型中的一个重要组成部分,其主要作用是在模型的初始阶段对输入图像进行处理,方便后续的特征提取和目标检测。以下是对Simple Stem模块的详细介绍:

2.1 设计背景

现代Vision Transformers(ViTs)通常采用分段补丁作为初始模块,通过卷积操作将图像分割成非重叠的片段。然而,这种方法会限制ViTs的优化能力,进而影响整体性能。为了在性能和效率之间找到平衡,Mamba - YOLO提出了Simple Stem模块。

2.2 设计结构

Simple Stem模块摒弃了传统ViTs的分段补丁方式,采用了两个步长为2、核大小为3的卷积操作

这种设计相对较为简洁,避免了复杂的图像分割过程,同时能够有效地对输入图像进行初步的特征提取和下采样操作。通过

评论 17
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值