import pandas as pd
# pandas 读取数据
data = pd.read_csv("C:/Users/Administrator/Desktop/data/ccpp.csv")
data.head()
X = data[["AT","V","AP","RH"]]
print(X.shape)
y = data[["PE"]]
print (y.shape)
"""
sklearn.cross_validation是sklearn老版本的模块,新版本都迁移到了model_selection
"""
from sklearn.model_selection import train_test_split
# 划分训练集和测试集
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=1)
print (X_train.shape)
print (y_train.shape)
print (X_test.shape)
print (y_test.shape)
from sklearn.linear_model import LinearRegression
linreg = LinearRegression()
linreg.fit(X_train,y_train)
# 训练模型完毕,查看结果
print (linreg.intercept_)# 截距
print (linreg.coef_) #系数
y_pred = linreg.predict(X_test)
from sklearn import metrics
import numpy as np
# 使用sklearn来计算mse和Rmse
print ("MSE:",metrics.mean_squared_error(y_test, y_pred))
print
线性回归之电力预测
最新推荐文章于 2025-03-19 10:36:21 发布