【目标检测类】YOLOv5网络模型结构基本原理讲解

1. 基本概念

YOLOv5模型结构主要包括以下组成部分:‌

  • 输入端:‌YOLOv5的输入端采用了多种技术来增强模型的性能,‌包括Mosaic数据增强、‌自适应锚框计算、‌以及自适应图片缩放。‌这些技术有助于提高模型的泛化能力和适应不同尺寸的输入图像。‌

  • Backbone:‌Backbone部分是YOLOv5模型的核心,‌它采用了CSP-Darknet53结构。‌这种结构结合了CSP(‌Cross Stage Partial Network)‌技术和Darknet架构,‌通过减少计算量和参数数量同时保持高效的特征提取能力。‌此外,‌Focus结构作为一种有效的特征融合技术,‌在Backbone的开始部分被使用,‌以提高模型对小目标的检测能力。‌

  • Neck:‌Neck部分采用了FPN(‌Feature Pyramid Networks)‌+PAN(‌Path Aggregation Network)‌结构,‌这种结构能够在不同的特征图层次上进行检测,‌融合来自不同特征图层次的信息,‌从而提高目标检测的性能。‌

  • Prediction:‌在Prediction部分,‌YOLOv5使用了CIOU_Loss作为损失函数,‌这种损失函数可以缓解目标检测中类别不平衡的问题,‌提高模型的性能。‌此外,‌非极大值抑制(‌NMS)‌技术也在输出端被应用,‌对重叠的目标框进行处理,‌以得到最终的检测结果。‌

2.输入端

‌YOLOv5的输入端采用了多种技术来增强模型的性能,‌包括Mosaic数据增强、‌自适应锚框计算、‌以及自适应图片缩放。

2.1 Mosaic数据增强

Mosaic图像增强是一种数据增强技术,‌通过将多张图片按照一定比例组合成一张图片,‌以增加数据的多样性和丰富性,‌从而提高模型的训练效果和泛化能力。‌

Mosaic图像增强的原理主要涉及以下几个步骤:‌

  • 构建底图:‌首先,‌构建一张较大的底图,‌其尺寸通常大于输入图像的尺寸,‌例如2176*2176,‌并且底图通常为灰色(‌R114,G114,B114)‌。‌
  • 选择拼接点:‌在底图上选择一个拼接点,‌这个点通常位于底图的中心位置,‌例如点A(544,544)和点B(1632,1632)限定的矩形内。‌
  • 图像裁剪与拼接:‌随机选择四张图像,‌根据之前确定的拼接点,‌分别在这四张图像上裁剪出相应的区域,‌并将这些区域拼接到底图上。‌

实战代码模块的YOLOv5s的项目代码中,设置了两种类型,分别是Mosaic4 load和Mosaic9 load,这是两种不同的数据增强方式,它们的区别在于使用的图像数量不同。

  • Mosaic4 load会随机选择4张不同的图像,并将它们拼接在一起,形成一张包含4个不同图像的大图像。然后,将大图像作为训练集中的一张图像,对其进行数据增强操作,如随机裁剪、大小变换等。这样可以增加训练集的多样性和难度,提高目标检测模型的鲁棒性和泛化能力。
  • Mosaic9 load则会随机选择9张不同的图像,并将它们拼接在一起,形成一张包含9个不同图像的大图像。然后,对大图像进行数据增强操作,如随机裁剪、大小变换等。这样可以进一步增加训练集的多样性和难度,提高模型的鲁棒性和泛化能力。

总之,Mosaic4 load和Mosaic9 load都是用于数据增强的方法,它们的区别在于使用的图像数量不同,Mosaic9 load使用的图像数量更多,相应地增加了训练集的多样性和难度,但也增加了计算量和训练时间。

Mosaic图像增强的优点包括:‌

  • 增加数据多样性:‌通过组合多张图片,‌可以生成大量新的、‌具有丰富背景和目标的训练样本,‌从而增加模型的泛化能力。‌
  • 提高batch_size:‌由于四张图片拼接在一起,‌相当于在一个batch中提供了更多的信息,‌这在训练深度学习模型时可以提高训练效率和准确性。‌

然而,‌Mosaic图像增强也存在潜在的缺点,‌特别是在处理包含小目标的数据集时。‌如果数据集中本身就有很多小目标,‌数据增强之后可能会导致这些小目标在拼接后的图像中变得更小,‌从而影响模型的泛化能力。‌因此,‌在使用Mosaic图像增强时,‌需要权衡其带来的好处与可能带来的问题,‌确保模型训练的效果和泛化能力达到最佳。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值