一、BiFPN原理
1.1 基本原理
BiFPN(Bidirectional Feature Pyramid Network),双向特征金字塔网络是一种高效的多尺度特征融合网络,其基本原理概括分为以下几点:
- 双向特征融合:BiFPN允许特征在自顶向下和自底向上两个方向上进行融合,从而更有效地结合不同尺度的特征。
- 加权融合机制:BiFPN通过为每个输入特征添加权重来优化特征融合过程,使得网络可以更加重视信息量更大的特征。
- 结构优化:BiFPN通过移除只有一个输入边的节点、添加同一层级的输入输出节点之间的额外边,并将每个双向路径视为一个特征网络层,来优化跨尺度连接。
如下图所示:
(a) FPN (Feature Pyramid Network): 引入了自顶向下的路径来融合从第3层到第7层(P3 - P7)的多尺度特征。
(b) PANet: 在FPN的基础上增加了自底向上的额外路径。
© NAS-FPN: 使用神经架构搜索(NAS)来找到不规则的特征网络拓扑,然后重复应用相同的块。
(d) BiFPN: 通过高效的双向跨尺度连接和重复的块结