大数据毕业设计:Python音乐推荐系统 协同过滤推荐算法(附源码)

1、项目介绍

技术栈:
Python语言、Django框架、MySQL数据库、双协同过滤推荐算法(基于物品+基于用户)、音乐播放功能模块、css + js + HTML

本系统采用Python+Django+MySQL设计与实现。前端用户可以看到音乐分类,进行音乐操作、查看个人中心内容等,同时,系统根据用户的操作行为,分别采用基于用户和物品的推荐算法完成热点音乐推荐。后台可以进行用户管理、音乐类型管理、兴趣标签管理、歌单管理、评论记录管理、播放记录管理、评分记录管理等操作。通过本系统,可以实现为用户进行个性化的音乐推荐。

2、项目界面

(1)系统首页

3、项目说明

迄今为止,音乐资源已成为互联网资源中不可缺少的一部分,而随着互联网上大量的音乐资源的不断涌现,开发出一套个性化的音乐推荐系统势在必行。该系统的目标是向每个用户推荐符合自己偏好的音乐。
本系统采用Python+Django+MySQL设计与实现。前端用户可以看到音乐分类,进行音乐操作、查看个人中心内容等,同时,系统根据用户的操作行为,分别采用基于用户和物品的推荐算法完成热点音乐推荐。后台可以进行用户管理、音乐类型管理、兴趣标签管理、歌单管理、评论记录管理、播放记录管理、评分记录管理等操作。通过本系统,可以实现为用户进行个性化的音乐推荐。
关键词:Python,Django,协同过滤算法

本系统主要有以下基本需求:
(1)数据集:每个用户所收藏、评分、评论的音乐数量要多一些,尽量广泛涉及各种类型的音乐
(2)推荐算法:推荐效果要良好,推荐内容合理
(3)包括用户注册登录在内的整个web系统
(4)系统要易于扩展和后期维护
在后台管理员模块主要有用户系统管理、音乐类型管理、兴趣标签管理、歌单系统管理、评论记录管理、播放记录管理、评分记录管理七个部分的功能,如图所示。在用户端主要设计实现了用户注册登录、音乐推荐、音乐操作(收藏、播放、评分、评论、下载)、以及个人中心的功能;而收藏、评分情况、播放记录是系统对相应用户进行个性化推荐的最主要的依据,通过对相似度的计算来实现推荐的目的,这是本系统最关键的部分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值