参数化曲线
取参数化曲线上一点,其点的坐标各个分量都是参数u的函数,即
p = p ( u ) = [ x ( u ) , y ( u ) , z ( u ) ] T \bm{p}=\bm{p}(u)=[x(u),y(u),z(u)]^T p=p(u)=[x(u),y(u),z(u)]T
通常,采用基形式描述一条参数化曲线:
p ( u ) = ∑ i = 0 n a i φ i ( u ) \bm{p}(u)=\sum_{i=0}^{n} \bm{a_i}\varphi _{i} (u) p(u)=i=0∑naiφi(u)
其中, a i \bm{a_i} ai称为系数矢量, φ i ( u ) \varphi _{i} (u) φi(u)称为基函数。

例如,给定两点
p
0
=
[
1
,
2
,
4
]
T
\bm{p}_0=[1,2,4]^T
p0=[1,2,4]T,
p
1
=
[
9
,
6
,
8
]
T
\bm{p}_1=[9,6,8]^T
p1=[9,6,8]T,做一条经过两点的参数化直线,做线性插值:
p
(
u
)
=
φ
0
∗
a
0
+
φ
1
∗
a
1
=
(
1
−
u
)
∗
p
0
+
u
∗
p
1
\bm{p}(u)=\varphi _{0} *\bm{a_0}+\varphi _{1} *\bm{a_1} =(1-u)*\bm{p}_0+u*\bm{p}_1
p(u)=φ0∗a0+φ1∗a1=(1−u)∗p0+u∗p1
做高次插值:
p
(
u
)
=
(
1
−
u
3
)
∗
p
0
+
u
3
∗
p
1
\bm{p}(u)=(1-u^3)*\bm{p}_0+u^3*\bm{p}_1
p(u)=(1−u3)∗p0+u3∗p1
取参数u的范围为[0,1],将两种插值方式生成点的x,y,u的关系曲线分别绘制出来: