D. Decorate Apple Tree (树的dfs)(*1600)

本文介绍了一种使用vector构建二叉树的方法,并通过深度优先搜索(DFS)算法递归计算每个节点下包含的叶子节点数量。代码示例清晰展示了从输入构建树结构到最终输出排序后的叶子节点计数的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://codeforces.com/contest/1056/problem/D

问题:求每个节点包含多少个叶子(叶子本身包含自身)

知识点:运用vector建立一颗二叉树,然后通过dfs递归的方式回推每个节点包含多少叶子,算是简单的vector建立关系的应用

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
#define ll long long
#define mod 1000000007
#define inf 0x3f3f3f3f
using namespace std;
int num[100005];
vector<int>v[100005];
void dfs(int x)
{
    if(! v[x].size())
    {
        num[x] = 1;
        return ;
    }
    for(int i = 0; i < v[x].size(); i ++)
    {
        dfs(v[x][i]);
        num[x] += num[v[x][i]];
    }
    return ;
}
int main()
{
    int n;
    scanf("%d",&n);
    int tmp;
    for(int i = 2; i <= n; i ++)
    {
        scanf("%d",&tmp);
        v[tmp].push_back(i);
    }
    dfs(1);
    sort(num + 1, num + 1 + n);
    for(int i = 1; i < n; i ++)
        printf("%d ",num[i]);
    printf("%d\n",num[n]);
    return 0;
}

 

 

以上给的代码报错了:C:\Users\ktvpi\.conda\envs\fa_env\python.exe D:\ai_model\face-alignment-master\video_detected.py 处理帧: 2%|▏ | 1/48 [00:06<05:03, 6.46s/it]Traceback (most recent call last): File "D:\ai_model\face-alignment-master\video_detected.py", line 157, in <module> process_video(video_path, output_path) File "D:\ai_model\face-alignment-master\video_detected.py", line 129, in process_video landmarks = fa.get_landmarks_from_image(frame[:, :, ::-1]) File "C:\Users\ktvpi\.conda\envs\fa_env\lib\site-packages\torch\utils\_contextlib.py", line 116, in decorate_context return func(*args, **kwargs) File "D:\ai_model\face-alignment-master\face_alignment\api.py", line 168, in get_landmarks_from_image out = self.face_alignment_net(inp).detach() File "C:\Users\ktvpi\.conda\envs\fa_env\lib\site-packages\torch\nn\modules\module.py", line 1736, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Users\ktvpi\.conda\envs\fa_env\lib\site-packages\torch\nn\modules\module.py", line 1747, in _call_impl return forward_call(*args, **kwargs) RuntimeError: nvrtc: error: failed to open nvrtc-builtins64_124.dll. Make sure that nvrtc-builtins64_124.dll is installed correctly. nvrtc compilation failed: #define NAN __int_as_float(0x7fffffff) #define POS_INFINITY __int_as_float(0x7f800000) #define NEG_INFINITY __int_as_float(0xff800000) template<typename T> __device__ T maximum(T a, T b) { return isnan(a) ? a : (a > b ? a : b); } template<typename T> __device__ T minimum(T a, T b) { return isnan(a) ? a : (a < b ? a : b); } extern "C" __global__ void fused_cat_cat(float* tinput0_42, float* tinput0_46, float* tout3_67, float* tinput0_60, float* tinput0_52, float* tout3_71, float* aten_cat_1, float* aten_cat) { { if (blockIdx.x<512ll ? 1 : 0) { aten_cat[(long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)] = ((((long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)) / 1024ll<192ll ? 1 : 0) ? ((((long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)) / 1024ll<128ll ? 1 : 0) ? __ldg(tinput0_60 + (long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)) : __ldg(tinput0_52 + ((long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)) - 131072ll)) : __ldg(tout3_71 + ((long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)) - 196608ll)); } aten_cat_1[(long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)] = ((((long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)) / 4096ll<192ll ? 1 : 0) ? ((((long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)) / 4096ll<128ll ? 1 : 0) ? __ldg(tinput0_42 + (long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)) : __ldg(tinput0_46 + ((long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)) - 524288ll)) : __ldg(tout3_67 + ((long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)) - 786432ll)); } } 处理帧: 2%|▏ | 1/48 [00:06<05:23, 6.88s/it] Process finished with exit code 1
最新发布
06-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值