Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 17895 | Accepted: 8143 |
Description
Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls, but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and, of course, a cow may be only assigned to one stall.
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible.
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible.
Input
The input includes several cases. For each case, the first line contains two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. Each of the following N lines corresponds to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow.
Output
For each case, output a single line with a single integer, the maximum number of milk-producing stall assignments that can be made.
Sample Input
5 5 2 2 5 3 2 3 4 2 1 5 3 1 2 5 1 2
Sample Output
4
n牛,m个房子,每个牛都只住在自己想住的房子里面,一个房子只能住一个牛,问最多可以安排多少头牛入住;
像案例里的,第一头牛只愿意住2,5;第二头牛,只住2,3,4;第三头只住1,5;第四头只住1,2,5;第五头住2;
通过匈牙利算法可求得结果为4;
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <stack>
#include <vector>
using namespace std;
/*
用二维数组记录每头牛想去的位置信息
标记记录位置被访问的情况
主要运用 匈牙利算法
*/
int n,m,ans;
int map[1005][1005];
int guishu[1005];
bool cover[1005];
bool dfs(int x){
for(int i=1;i<=m;i++){
if(map[x][i]&&!cover[i]){
cover[i]=1;
if(guishu[i]==-1||dfs(guishu[i])){//匈牙利算法核心
guishu[i]=x;
return 1;
}
}
}
return 0;
}
int main(){
while (cin>>n>>m) {
ans=0;
int num,y;
memset(map,0,sizeof(map));
for(int i=0;i<n;i++){
cin>>num;
while(num--){
cin>>y;
map[i][y]=1;
}
}
memset(guishu,-1,sizeof(guishu));
for(int i=0;i<n;i++){
memset(cover,0,sizeof(cover));
if(dfs(i))
ans++;
}
cout<<ans<<endl;
}
return 0;
}