需要求解的积分具有如下形式:
∫1a+bsinxdx\int \frac{1}{a+b \sin x} d x∫a+bsinx1dx
这种积分比较常见,可以考虑记一下它的结果,结果为:
∫1a+bsinxdx=2a2−b2⋅arctan⋅{atan(x2)+ba2−b2}\int \frac{1}{a+b \sin x} d x=\frac{2}{\sqrt{a^{2}-b^{2}}} \cdot \arctan \cdot\left\{\frac{a \tan \left(\frac{x}{2}\right)+b}{\sqrt{a^{2}-b^{2}}}\right\}∫a+bsinx1dx=a2−b22⋅arctan⋅{a2−b2atan(2x)+b}
证:
已知
sinx=2tanx21+tan2x2\sin x=\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}sinx=1+tan22x2tan2x
故有
∫1a+bsinxdx=∫1a+b2tanx21+tan2x2dx(∗)\int \frac{1}{a+b \sin x} d x=\int \frac{1}{a+b \frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}} d x (*)∫a+bsinx1dx=∫a+b1+tan22x2tan2x1dx(∗)
令tanx2=t\tan \frac{x}{2}=ttan2x=t,则dx=21+t2dtd x= \frac{2}{1+t^2}d tdx=1+t22dt
则有
∫1a+b⋅2t1+t2⋅21+t2dt=1a∫21+t2+2batdt=2a∫1t2+2bat+b2a2+1−b2a2dt=2a11−b2a2∫1a2a2−b2⋅(t+ba)2+1dt(∗∗)
\begin{aligned}
\int \frac{1}{a+b \cdot \frac{2 t}{1+t^{2}}} \cdot \frac{2}{1+t^{2}} d t &= \frac{1}{a} \int \frac{2}{1+t^{2}+\frac{2 b}{a} t} d t \\
&= \frac{2}{a} \int \frac{1}{t^{2}+\frac{2 b}{a} t+\frac{b^{2}}{a^{2}}+1-\frac{b^{2}}{a^{2}}} d t \\
&= \frac{2}{a} \frac{1}{1-\frac{b^{2}}{a^{2}}} \int \frac{1}{\frac{a^{2}}{a^2-b^2} \cdot \left(t+\frac{b}{a}\right)^{2}+1} d t (**)
\end{aligned}
∫a+b⋅1+t22t1⋅1+t22dt=a1∫1+t2+a2bt2dt=a2∫t2+a2bt+a2b2+1−a2b21dt=a21−a2b21∫a2−b2a2⋅(t+ab)2+11dt(∗∗)
再令y=aa2−b2⋅(t+ba)y=\frac{a}{\sqrt{a^2-b^2} }\cdot \left(t+\frac{b}{a}\right)y=a2−b2a⋅(t+ab),则dt=a2−b2adyd t=\frac{\sqrt{a^{2} - b^{2}}}{a} d ydt=aa2−b2dy
故有
(∗∗)=2aa2−b2∫a2−b2/ay2+1dy=2a2−b2arctany(∗∗∗)
\begin{aligned}
(**) &= \frac{2 a}{a^{2}-b^{2}} \int \frac{\sqrt{a^2-b^2}/a}{y^{2}+1} d y\\
&=\frac{2}{\sqrt{a^{2}-b^{2}}} \arctan y (***)
\end{aligned}
(∗∗)=a2−b22a∫y2+1a2−b2/ady=a2−b22arctany(∗∗∗)
最后再将y=aa2−b2(tanx2+ba)y=\frac{a}{\sqrt{a^2-b^2}}\left( \tan \frac{x}{2} + \frac{b}{a} \right)y=a2−b2a(tan2x+ab)代入(∗∗∗)(***)(∗∗∗)中便可证得。