《机器人操作的数学导论》第二章习题之12
题目如下
易知,上式左侧可级数展开为
(1)eω^θ=∑k=0∞θkk!ω^k
\begin{aligned}
e^{\hat{\omega}\theta}=\sum_{k=0}^{\infty}\frac{\theta^k}{k!}\hat{\omega}^k
\tag{1}
\end{aligned}
eω^θ=k=0∑∞k!θkω^k(1)
又有:
(2)ω^0=0ω^1=ω^ω^2=ωωT−∣∣ω∣∣2I=ω^2ω^3=−∣∣ω∣∣2ω^ω^4=−∣∣ω∣∣2ω^2ω^5=∣∣ω∣∣4ω^ω^6=∣∣ω∣∣4ω^2
\begin{aligned}
\hat{\omega}^0&=0\\
\hat{\omega}^1&=\hat{\omega}\\
\hat{\omega}^2&=\omega\omega^T-||\omega||^2I=\hat{\omega}^2\\
\hat{\omega}^3&=-||\omega||^2\hat{\omega}\\
\hat{\omega}^4&=-||\omega||^2\hat{\omega}^2\\
\hat{\omega}^5&=||\omega||^4\hat{\omega}\\
\hat{\omega}^6&=||\omega||^4\hat{\omega}^2\\
\end{aligned}\tag{2}
ω^0ω^1ω^2ω^3ω^4ω^5ω^6=0=ω^=ωωT−∣∣ω∣∣2I=ω^2=−∣∣ω∣∣2ω^=−∣∣ω∣∣2ω^2=∣∣ω∣∣4ω^=∣∣ω∣∣4ω^2(2)
由上几式递推得到:
(3)对于k=1,2,3,⋯ ,有:ω^2k=(−1)k−1∣∣ω∣∣2k−2ω^2ω^2k−1=(−1)k−1∣∣ω∣∣2k−2ω^
\begin{aligned}
对于k&=1,2,3,\cdots,有:\\
\hat{\omega}^{2k}&=(-1)^{k-1}||\omega||^{2k-2}\hat{\omega}^2\\
\hat{\omega}^{2k-1}&=(-1)^{k-1}||\omega||^{2k-2}\hat{\omega}
\tag{3}
\end{aligned}
对于kω^2kω^2k−1=1,2,3,⋯,有:=(−1)k−1∣∣ω∣∣2k−2ω^2=(−1)k−1∣∣ω∣∣2k−2ω^(3)
将式(3)带入(1)中得:
eω^θ=∑k=0∞θkk!ω^k=I+(∑k=1∞(−1)k−1∣∣ω∣∣2k−2θ2k−1(2k−1)!)ω^+(∑k=1∞(−1)k−1∣∣ω∣∣2k−2θ2k(2k)!)ω^2=I+(∑k=1∞(−1)k−1∣∣ω∣∣2k−1θ2k−1(2k−1)!)ω^∣∣ω∣∣+(∑k=1∞(−1)k−1∣∣ω∣∣2kθ2k(2k)!)ω^2∣∣ω∣∣2=I+ω^∣∣ω∣∣sin(∣∣ω∣∣θ)+ω^2∣∣ω∣∣2(1−cos(∣∣ω∣∣θ))
\begin{aligned}
e^{\hat{\omega}\theta}&=\sum_{k=0}^{\infty}\frac{\theta^k}{k!}\hat{\omega}^k\\
&=I+(\sum_{k=1}^{\infty}\frac{(-1)^{k-1}||\omega||^{2k-2}\theta^{2k-1}}{(2k-1)!})\hat{\omega}+(\sum_{k=1}^{\infty}\frac{(-1)^{k-1}||\omega||^{2k-2}\theta^{2k}}{(2k)!})\hat{\omega}^2\\
&=I+(\sum_{k=1}^{\infty}\frac{(-1)^{k-1}||\omega||^{2k-1}\theta^{2k-1}}{(2k-1)!})\frac{\hat{\omega}}{||\omega||}+(\sum_{k=1}^{\infty}\frac{(-1)^{k-1}||\omega||^{2k}\theta^{2k}}{(2k)!})\frac{\hat{\omega}^2}{||\omega||^2}\\
&=I+\frac{\hat{\omega}}{||\omega||}\sin(||\omega||\theta)+\frac{\hat{\omega}^2}{||\omega||^2}(1-\cos(||\omega||\theta))
\end{aligned}
eω^θ=k=0∑∞k!θkω^k=I+(k=1∑∞(2k−1)!(−1)k−1∣∣ω∣∣2k−2θ2k−1)ω^+(k=1∑∞(2k)!(−1)k−1∣∣ω∣∣2k−2θ2k)ω^2=I+(k=1∑∞(2k−1)!(−1)k−1∣∣ω∣∣2k−1θ2k−1)∣∣ω∣∣ω^+(k=1∑∞(2k)!(−1)k−1∣∣ω∣∣2kθ2k)∣∣ω∣∣2ω^2=I+∣∣ω∣∣ω^sin(∣∣ω∣∣θ)+∣∣ω∣∣2ω^2(1−cos(∣∣ω∣∣θ))
得证。