import torch
import torch.nn as nn
import dgl
class GraphLSTAM(nn.Module):
def __init__(self, num_nodes, input_dim, hidden_dim, output_dim, num_layers):
super(GraphLSTAM, self).__init__()
self.graph_conv = dgl.nn.GraphConv(input_dim, hidden_dim)
self.lstm = nn.LSTM(hidden_dim, hidden_dim, num_layers=num_layers, batch_first=True)
self.attention = nn.Linear(hidden_dim, 1)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, g, features):
# g: DGLGraph object
# features: tensor of shape (batch_size, num_nodes, input_dim)
# Graph convolution layer
h = self.graph_conv(g, features)
h = t
图神经网络结合LSTM结合注意力机制代码
最新推荐文章于 2025-10-12 09:57:45 发布
本文深入探讨了如何将图神经网络(GNN)与长短期记忆网络(LSTM)相结合,并引入注意力机制,以提升深度学习模型的表现。通过具体的代码示例,阐述了这一组合在处理复杂数据结构时的优势,为读者提供了理解和实现这一技术的路径。
订阅专栏 解锁全文
2461

被折叠的 条评论
为什么被折叠?



